p-System
Program
Development

Copyright 1983 by SofTech Microsystems, Inc.

A1l rights reserved. No part of this work may
be reproduced in any form or by any means or
used to make a derivative work (such as a
translation, transformation, or adaptation)
without the written permission of SofTech
Microsystems, Inc.

pSystem is a trademark of SofTech Microsystems,
Inc.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of California.
Use thereof in conjunction with any goods or
services is authorized by specific license only,
and any unauthorized use is contrary to the laws
of the State of California.

Printed in the United States of America.
Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither
the manufacturer nor the seller is responsible
or liable for any consequences of their use.

PREFACE

Preface

This book is a reference manual for the
p-System . It describes the p-System facilities
which enable you to develop programs. It is
designed for a data processing professional who
is familiar with the p-System. The details of
the various programming languages—UCSD Pascal ,
FORTRAN, and BASIC—aren't covered in this
manual.

The following books and manuals may also be of
interest to you. They are available from
SofTech Microsystems.

Personal Computing with the UCSD p-System
UCSD Pascal Handbook

Operating System Reference Manual
Assembler Reference Manual

Optional Products Reference Manual
Internal Architecture Reference Manual
Adaptable System Installation Manual
FORTRAN-77 Reference Manual

BASIC Reference Manual

TABLE
OF

CONTENTS

INI‘ROD[JCI‘Im @ @ ¢ o o o o o o 0 0 0 0 0 0 o 0 o @ 1‘3
HC’” TO USE THIS MANUAL ® o © o o o o o o o o 1-3
BACKGRO[]ND @ o & o o o o o o o O o o 0 o 0 o 0 o 1_4

DESIGN PHILOSOPHY e & o o o o o o o o o e & o 0 1-6
USG’I‘—FI'iendly e @ o ¢ o o o o o ° o e ¢ ° o o 1"7
Portability ® o o o 6 & o o 0 0 4 0 0 o 0o o o 1-7

Table of Contents

MAPILING PR(X;RAMSAND[JNITS. e o o6 o o o o o 02—3

INTR()DIJCTIm..................2—3

USING THE OOMPILER : ¢ ¢ o o o o o o o o o o » 2-3
Syntax ErTOrS e « « ¢ o o ¢ o o ¢ o ¢ o o o o 2=7
Compiled ListingS. « « ¢ ¢« ¢ ¢ ¢ o ¢ ¢« o o » 2-9
Compiler Options. « « « « « « ¢« ¢ ¢ o« s o o« 2-13

$B
$C
$D
$D
$E
$1
$1
$L
$N
$P
$Q
$R

Begin Conditional Compilation. . . 2-15
Copyright Field. « « ¢ ¢« ¢« ¢« ¢« o« » « 2-15
Conditional Compilation Flag. . . 2-16
Symbolic Debugging. . « « « « « « « 2-16
End Conditional Compilation. . . . 2-16
I/O Check Option. « « ¢« « o o « » «» 2-16
Include File€. ¢ ¢ ¢ o ¢ o o o s o o « 2=17
Compiled Listing. « ¢« « + ¢« « ¢« « « 2-19
Native Code Generation. « 2-20
Page and Pagination. « « « « . « » 2-20
Quiet. ¢« ¢« ¢ ¢ ¢ ¢ ¢ s s s v 0 o e e 2221
Range Checking. « « « « o ¢ ¢ ¢« « » 2=21

$R2 and $R4 - Real Size. « o ¢ ¢ o o » «» 2-22
BT — Titlee o ¢ ¢ ¢ o ¢ o o o 0 0 0 o o o« 2=22
PU — Use Library. « « ¢« o o o« o o o o o o« 2=22
$U — User Program. « « « « o o ¢ « o« o« o« « 2=23
Conditional Compilation. « « ¢« ¢« ¢ ¢ « « . 2-24
Selective USESe o o o ¢ ¢ o o 6 6 0 0 o o o 2-27

Table of Contents

SEGMENTS, UNITS AND LIBRARIES. . « « « . « 2-32
Segmenting a Program. « « « « ¢« « ¢ « « o« « 2-32
Separate Compilation — Units. 2-33
Librari€S. ¢« o« s « s ¢ ¢ ¢ ¢ ¢ ¢ o ¢« o o s o 2-36

GENERALTACI‘ICS-........-.....2—40

USERINTE:RFACE......0000000000003-3
INI‘ROD[]CI‘I(N-....00010000000103—3

RUN-TIME APPLICATION FACILITIES. 34
Single-Use Rlln—Tim System. e o 6 o & o o o 3—5
Systan Initializ&tion. e & &6 & o o o o s o o 3"'6

THE SCREEN CONTROL UNIT. « ¢« ¢ ¢« ¢ ¢« « o o« o 3-7
SCREENO% Interface Section e o ¢ & o o o o 3-8
ROIltineS Within SCREENOPS « @ ¢ & o o o o o 3-10

ERM)R HANDLER []NIT. a & & & 0 o & & ¢ o o+ o 3-18
FOI‘HB,t Of EI‘I‘OI‘ MeSSH.geS ® & & 0 & o o o o 3-18
User Control of Error Messages. . « « « « 3-20

THEC(MMANDI/OUNIT............ 3"‘24

TURTLEGRAPHICS ¢ ¢« ¢ « ¢ o o o o 2 ¢ o o o s o 3=27
The Turtlee « « « o ¢ o o o ¢ ¢ o s o ¢ o« 3=29
The Display « « ¢ o« « ¢ ¢« o s ¢ ¢ o s o o o » 3=35
LabelS . o ¢ ¢ ¢ o ¢ o s o s a0 s e s 000 336
ScAlinge ¢« « o ¢ ¢ s o s 0 s 00000 337
Figures and the Port. . . « « « ¢ « ¢ o+ s+ +3=41

Table of Contents

PixelS e o ¢ o ¢ ¢ o o o o 0 s o s 000 e. . 346
FOtofileS e ¢« o o ¢ ¢ ¢ ¢ o o o e o s o o o « 3-47
Routine Parameters. « «» « « o« o s ¢ o« « o « 3-50
Sample Program. « « « o ¢« « o« « o ¢« s o s« o« 3=51
Using Turtlegraphics from FORTRAN. . . . 3-53
Using Turtlegraphics From BASIC. 3-58
Installing Turtlegraphics. . « « « ¢ « « « 3-62
Graphics I/O Routines. « « « « ¢ ¢« s « « 3-65
Graphics System Initialization. 3-75
Character FontsS. « « + ¢« o o s o s o o o o 3=77
A Font Structure. « « « « ¢« ¢« « ¢« s o « «» 3-78
Linking and Librarying. . « « « « « « « «» 3=79
Exercising Turtlegraphics. . . « . « . .« 3-80
Display Set and Clear Pixel Test. . . . 3-80
Display Fill Color Tests. . « + « « « . 3-81
Display Line-Drawing Exercises. 3-83
User-Created Figures Exercises. 3-86
QUICKSTART UnitS. o ¢ o o o o o o ¢ o o o » 3-87
PEDGEN Unit Interface. 3-88
CHKSUMOPS Unit Interface. . . « ¢« ¢ o « «» 3-95

Table of Contents

FILE MANAGEMENT UNITS ® & @& & o o & 0 o o o o o 4—3
INTROD[}CTIm L] L L] L - L] L] . L] L] . L L L L] L] L L] 4_3
INTEBFACE Smr Ims . L L] L . L] L L L] L - L] L] L 4-5

DIRECTORY INFORMATION . ¢« &« o ¢ o o =« o « o « 4-12
Notation and Terminology « « « « o« « « o o« 4=13
File Name ArgumentS. « « « o« « o ¢« o ¢« « o« 4=-15
File Type Selection. . « « « ¢ ¢ ¢ ¢ o « . 4-16
File DatesS. « « « ¢ ¢ ¢ ¢ o 6 s 6 o o s+ . 4-18
Error ResultS. « « « ¢ ¢« ¢ ¢ = ¢ ¢« o o o « « 4-19
The DIR_INFO Routines. « « « ¢« « o ¢ « » « 420
DPINFO. « ¢ ¢ ¢« ¢ ¢ e o e o 00 eaaseae 431
Wild Card File Name Change. . « « « « « 4-42

WIID CARDS (WIID) 4 o« « ¢ o o« o = o = o s o o 457
Special Wild Card Characters. . . « « . . 4=-58
Question Mark Wild Card. « « « « « « « « 4-59
Equal Sign Wild Card. « = « ¢ « ¢+ « « « . 4-59
Subrange Wild Card. « « « « ¢« ¢ « ¢ o « « 4-60

D Wild Match Parameters. . . . « « . « . . 4-63
D Wild Match Pattern Matching Info. . . 4-64

SYSTEM INFORMATION. « ¢« ¢ ¢ ¢ ¢« o« ¢« ¢ o « » 4-68

FILEINPORMATION.-.............4—74

Table of Contents

DEBUGGIM;ANDANALYSIS.............5—3
INTRODIK:TIm..-.-oo.oooo'oo-..5-3

DEBUGGER . « « o « « ¢ s s o s ¢ ¢ s s s 0 000 53
Using the Debugger. . « « « ¢ ¢+ ¢« ¢+ ¢ ¢« « « 5-4
Entering and Exiting. « ¢« v ¢ ¢ ¢ ¢ = . . 5-5
Using Break PointS. « ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢ « « 56
Viewing and Altering Variables.5-8
Viewing Text Files. .« ¢ « ¢ ¢« o ¢ ¢ o « «» 5-11
Displaying Useful Information.5-12
Disassembling P-Code. . . « ¢ v ¢« ¢ « « . 5-14
Performance Monitor Interaction. .. . 5-14
The 'Z' Command. « ¢ « « « ¢ ¢« o « ¢ o« « » 5=15
Example of Debugger Usage. . « « « « « « 5-17
Symbolic Debugging. « « « « o« s o ¢ « o « » 5-19
Symbolic Debugging Example. « « « « « « 5-22
Summary of the Coomands. « « « + ¢ o « » « 525

PER.F‘ORMANCEmNI’IOR0.000000000005—28

UTILITIES..O0.0.00000..00000006-3
INTRODUCTI(N........-.........6—3

DECODE Programming Example. . « « o « « . » 66
D(ictionary Display. . ¢ ¢« « ¢ ¢« « « o o « « 6=8
Disassembled Listing. . . . « . v « « « + +6-10

Table of Contents

NATIVE mE GENEM.’POR. L] L] L} - [] [] L] e L] L[] L]
Directives and Pascal. « « « ¢« ¢ ¢« ¢ ¢ o &

6-13
6-14

Directives and BASIC., « « ¢« ¢« o s s o« s « « 6-16

Directives and FORTRAN., « ¢« « ¢« « ¢ ¢ o «
Rllnning the Nm *® e . * * * e * * * *® ® ® L2
N(I; LIMITS. * L] ® ® * * . * * *® * e . L] L] L]

EDIT MOd€. o« ¢ ¢« « ¢« o o o e ¢ o 6 s o s s
TYPE MOd€ .+ ¢« o ¢« ¢ ¢ ¢ o o 0 o 6 6 06 6 0 o
DUMP MOd€ . « o o« o o ¢ « s o s s 0 0 o o o s

THE XREF UTILITY . o ¢ ¢ ¢ o ¢ o o o s o o o o
Introduction. « « o« o« ¢ ¢ ¢ ¢ o o 6 ¢ o o o

Referencer's Output. . « « ¢ ¢« ¢ ¢ o ¢ o &
Lexical Structure Table. . « « « « « « &
The Call Structure Table. « ¢« « « « « &
The Procedure Call Table. « « ¢« « + « &
Variable Reference Table. « « « « « « &
Variable Call Table. ¢« « o ¢« ¢ o o « &
Warnings Fil€. ¢ ¢ ¢ o ¢ o o ¢ ¢ ¢ ¢ o o »
Using Referencer. « « « « o« o o o o o o o
Limitations. « ¢ o« o ¢« « ¢ ¢ o o o s o o o

6-16
6-17
6-24

6-27
6-27
6-30
6-32
6-35

6-36
6-36
6-36
6-37
6-38
6-39
6-39
6-40
6-41
6-42
6-45

Table of Contents

APPENDICES....O....oo.oo.o-co-A—l

INDEX...I....'..l.l....l.lllI_l

CHAPTER 1

INTRODUCTION

Introduction

HOW TO USE THIS MANUAL

This book is a reference manual for use with the
p-System. It describes the p-System facilities
which enable you to develop programs.,

Chapter 2, "Compiling Programs,”" covers the
Pascal compiler. The UCSD Pascal programming
language isn't covered in this manual. You
should see the UCSD Pascal Handbook if you are
interested in a thorough description of the
language. This chapter also describes units,
segments, and libraries. These facilities are
used when you separately compile program
modules. Using them you can compile and run
much larger programs than you would otherwise be
able to within a given computer's memory and
disk space limitations.

Chapter 3, "User Interfacing,” describes several
pSystem facilities that can assist your
programs in presenting a clean and portable user
interface. For example, the p-System can be
completely hiddem underneath your application's
own enviromment. Programs may be chained
together and called from a simple menu driver
that appears whem a disk 1is bootstrapped.
Whether or not you use this approach, you may
wish to take advantage of screen handling and
error imterception facilities described in this
chapter.

1-3

Introduction

Chapter 4, "File Management," covers the file
management units. These allow your programs to
manipulate disk files in a similar fashion to
the filer. For example, files can be listed and
removed, volumes can be crunched, and so forth.

Chapter 5, "Debugging and Analysis" covers the
debugger and the performance monitor units. The
debugger is a very powerful tool for finding and
correcting errors that might exist in programs
you write. The performance monitor allows you
to accumulate statistical information concerning
various performance-related issues. Many of the
utilities described in Chapter 6 are also
valuable as debugging and analysis aids.

Chapter 6, "Utility Programs," describes several
p-System utility programs that are generally
useful. Most of these are specifically valuable
during program development.

BACKGROUND

In June 1979, SofTech Microsystems in San Diego,
began to license, support, maintain, and develop
the p-System. The resulting effort to build the
world's best small computer environment for
executing and developing applications has
dramatically increased the growth and use of the
p-System. The first p-System ran on a 16-bit
microprocessor. Today, the p-System runs on
8-bit, 16-bit, and 32-bit machines—including
the 780, 8080/8085, 8086, 6502, 6809, 68000,
9900, PDP-11, LSI-11, and VAX.

1-4

Introduction

The p-System began as the solution to a problem.
The University of California at San Diego needed
interactive access to a high-level language for
a computer science course. In late 1974,
Kenneth L. Bowles began directing the
development of the solution to that problem:
the p-System. He played a principal role in the
early development of the software.

In the summer of 1977, a few off-campus users
began running a version of the p-System on a
PDP-11. When a version for the 8080 and the Z80
began operating in early 1978, outside interest
increased until a description of the p-System in
Byte Magazine drew over a thousand inquiries.

As interest grew, the demand for the p-System
couldn't be met within the available resources
of the project. SofTech Microsystems was chosen
to support and develop the p-System because of
its reputation for quality, high technology, and
language design and implementations.

Introduction

DESIGN PHILOSOPHY

The development team, many of whom continued
their efforts on behalf of the system at SofTech
Microsystems, decided to use stand-alone,
personal computers as the hardware foundation
for the p-System rather than large, time-sharing
computers. They chose Pascal for the
programming language because it could serve in
two capacities: the language for the course and
the system software implementation language.

The development team had three primary design
concerns:

1. The user interface must be oriented
specifically to the novice, but must be
acceptable to the expert.

2. The implementation must fit into personal,
stand-alone machines (64K bytes of memory,
standard floppy disks, and a CRT terminal).

3. The implementation must provide a portable
software environment where code files
(including the operating system) could be
moved intact to a new microcomputer. In this
way, application programs written for one
microcomputer could run on another
microcomputer without recompilation.

The current design philosophy at SofTech
Microsystems, where the p-System continues to
evolve, is bascially the same as the original
philosophy.

1-6

Introduction

User-Friendly

The p-System continuously identifies 1its
current mode and the options available to you
in that mode. This is accomplished by using
menus, displays, and prompts. You may select
an option from a menu by pressing a
single-character activity. The system's
displays then guide your interactions with the
computer. As you gain more experience, you
can ignore the continuous status
information—unless it is needed.

Portability

The p-System is more portable than any other
microcomputer system. It protects your
software investments without restricting
hardware options. The p-System does this by
compiling programs into p-code—rather than
native machine language—thus, allowing these
code files to be executed on any microcomputer
that runs the p-System.

CHAPTER 2

COMPILING PROGRAMS

AND UNITS

Compiling Programs and Units

INTRODUCTION

This chapter is principally concerned with the
UCSD Pascal compiler. The BASIC and FORTRAN
compilers are described in separate reference
manuals. However, this chapter should be useful
even if you are only planning to use BASIC or
FORTRAN. ‘

The UCSD Pascal programming language 1isn't
covered here. If you're interested in a
detailed description of UCSD Pascal, you should
consult the UCSD Pascal Handbook.

Separate compilation is also covered in this
chapter. Specifically, the UCSD Pascal unit
construct, program segmentation, and code file
libraries are addressed.

USING THE COMPILER

The compiler takes a text file as input and
generates a machine-portable code file as
output. The generated code file contains
p-code, which 1is executed by the p-System's
p-machine emulator. This emulator is written in
assembly language and runs directly on the host
computer's hardware.

2-3

Compiling Programs and Units

You can start the compiler by selecting the
C(ompile or R(un activity of the Command menu.
If a work file exists, it is compiled.
Otherwise, you are prompted for a text file to
compile, like this:

Compile what text 2

Enter the name of the text file, but don't
include the ".TEXT" suffix (which is assumed).
Next, you are asked:

To what codefile 2 _

Here, you should enter the name of the code file
that you want the compiler to produce. Don't
include the ".CODE" suffix (which, once again,
is assumed). If you enter '$' followed by
{return>, the code file is given the name which
corresponds to the text file being compiled. If
you simply press <return>, the code file
*SYSTEM.WRK.CODE is produced. The next prompt
is:

Output file for compiled listing ? (<esc> for none) _

2-4

Compiling Programs and Units

This allows you to indicate where you want the
compiled listing to be sent. You can respond
with a file name, with a communications volume
such as PRINTER: or CONSOLE:, or simply with
{return>. When you enter a file name, the
listing is placed in the file. You may use the
suffix ".TEXT", but it is always appended if you
don't. If you specify a communications volume,
the listing is sent there (where it is printed,
displayed, or transmitted). When you simply
press <{return>, no listing is produced.

The $L Pascal compiler option can also create a
compiled listing, as described later in this
chapter. If you indicate a file or
communications volume in response to this
prompt, however, the compiler option is
overriden. (You should note that ".TEXT" isn't
automatically appended with the $L optior as it
is with this prompt.)

While the compiler is running, it displays a
report of 1its progress on the screen in this
manner:

Pascal compiler - release level VERSION
<) e e e e o e e e

- 237 lines compiled

INITIALI .
MYPROG

Compiling Programs and Units

During the first pass, the compiler displays the
name of each routine. In this example,
INITIALI, AROUTINE, and MYPROG are the routines.
The numbers enclosed within angle brackets, < >,
are the current line numbers, and each dot on
the screen represents one source line compiled.

During the second pass, the names displayed are
segments. In the example, MYPROG is the program
segment, and INITIALI is a segment routine.
Here the dots represent one routine within the
segment. MYPROG contains both itself and
AROUTINE.

You can suppress this output if you want by
using the $Q compiler option, described later.

If the compilation is successful, that is, if no
compilation errors are detected, the compiler
creates a code file. This file is called
*SYSTEM.WRK.CODE if you are using work files or
if you press <return> in response to the
compiler's prompt:

- To what codefile?

Otherwise, it is given the name that you specify
in response to that prompt.

When you select R(un (instead of C(ompile), the
resulting code file is automatically executed.
If you have a work code file, or if you have
just compiled a program, R(un simply executes
it.

Compiling Programs and Units

Syntax Errors

If your program text doesn't conform to the
rules of the Pascal programming language, the
compiler issues a syntax error. When this
happens, the text where the error occurred is
displayed, along with an error number or
message. Here are two examples:

“TMY-FIRST LINE OF TEXT-Smm=- . hifocmiinln o S
'PROGRAM" or 'UNIT' expected R By
Line-1T - Ao Y R SR R RS st
]’ype'<;p> to continue, <esc> to- terminate, or ‘e’ to edit- -~
MY -FIRST LINE OF TEXT <==~ -

"~ Error #405 - i

Line 1 - - Gl R o T e D
" Type <sp>-to continue, <esc> to terminate, or "e' to edit-

This is the same error displayed twice (the
first line of a program is incorrect). In the
first case, the error message is displayed.
In the second case, the error number is
displayed. You only receive the error message
if the file *SYSTEM.SYNTAX is available. If
*SYSTEM.SYNTAX isn't present, you need to look
up the error number in the appropriate
appendix to this manual. (Compiler error

messages are given for Pascal, BASIC, and
FORTRAN.)

After each syntax error, a message like one of
these is displayed and the compiler gives you
the option of pressing <space> to continue the
compilation, <esc> to terminate it, or 'E' to
enter the editor.

2-7

Compiling Programs and Units

You can press <space> for every syntax error
in the program if you wish. In this way, you
can usually discover all of the errors that
exist. (However, some syntax errors can
"confuse" the compiler and hide other syntax
errors.) A code file is never produced if
syntax errors are found. But, a compiled
listing can be produced. You can use such a
listing to keep track of the errors so that
you can correct them all at once.

If you elect to press 'E' after a syntax
error, the compilation is terminated (as it is
with <esc>). However, you can now fix the
error immediately because the editor is
automatically invoked. If the file that you
are compiling is a work file, it is read into
your work space. If it isn't a work file, you
are asked to specify which file you want to
edit (in the editor's normal fashion). In
either case, when the file is read into the
work space, the cursor is placed at the exact
spot where the error was detected. The error
message or number is redisplayed and you must
press <space> to begin editing so that you can
fix the problem. When a syntax error occurs
in an include file (see the $I compiler
option), you must be sure to specify that file
correctly as you enter the editor. You are
informed of the name of the include file after
the "Line #" portion of the syntax error
message.

2-8

Compiling Programs and Units

If both the $Q and $L compiler options are in
effect, the compilation continues and the
syntax error is only reported in the listing
file. In this case, the screen remains
undisturbed by syntax errors.

Compiled Listings

The compiler may optionally produce a listing
of the compiled source. This listing contains
your text along with information about the
compilation. Compiled 1listings are very
useful for reference as well as analysis and
debugging purposes.

In order to produce a compiled listing, you
can use the compiler's prompt for a listing
file which is described above. Alternatively,
you can use the $L compiler option which is
described under compiler options, below.

Here is the entire compiled listing for a very
simple program:

Pascal Compiler VERSION 1/01/83 Page 1

{$L Llist.text}

Program Comp_Listing_Example;
Begin 3
{

This is an example Listing of
an empty program.

BNV WN
NMARNNNNNNNO

B G e T o |
el et 2w ustinn ARTEN] v
cooocooan
00000 ==

End.

End of Compilation.

2-9

Compiling Programs and Units

Here is a sample portion of a more complex
listing:

2-10

Compiling Programs and Units

In those lines that aren't marked as commented
out (which is intended to warn you that a
comment may have accidentally eliminated some
Pascal code), the numbers that precede a
source line are:

1. The line number. For example, 397 in the
listing above.

2. The Pascal segment number. This entire
example is part of segment number 10.

3. The routine number followed by a colon and
the "lex level.”" In the example, procedure
iocheck is routine number 12 and procedure
dropindex is routine 13. The 1lex level
indicates how deeply the text is nested
within Pascal begin-end pairs.

4. The number of bytes of data or code storage
which the routine requires at that point.
For example, the IF statement, line 399,
requires 6 bytes of p-code. The entire
procedure iocheck requires 50 bytes of
p—code.

Lines which contain declarations (variables,
constants, and so forth) show a "d" following
the routine number. In the listing above,
lines 393 and 397 are examples of this.

2-11

Compiling Programs and Units

When the module that you are compiling uses a
unit, the interface section of that unit
appears in the compiled 1listing with a "u"
where the "d" normally appears. Also, the
additional 1line 'USING <UNITNAME>' appears in
the heading to make it easier for you to
distinguish interface sctions from the text
that you are specifically compiling.

Here is a portion of a compiled listing which
shows syntax errors:

596 10 (=57 sseRa Lastpageitem := min(lastentry,lastentry);
--=>Error #104 ! - ie-

ST 40125239 < . CFNT R,

598 10 - -1:5 239 { loop through the page J~

599 10 1554239 ‘Pagelnx := 0;

600 10~ 1:5 - 242 { function returns next greater } :

607 - 10~-"-1::5 242 . . Repeat funtil found or (Pagelnx > lastentry)}

602 10 1:6 - 242 Assert(Pagelnx‘<'Lastbageitem,‘bad PageInx");
=-=> Error #104 ; e

previous error - Lline 596 : ’ :

607 10 1:6- 271 found := (datalClPageInx].key > key) ;

This shows two instances of error 104. This
particular error indicates that an undeclared
identifier was found—"lastpageitem" 1is the
problem in both cases. An actual message
indicating "undeclared identifier" would have
been listed if the file *SYSTEM.SYNTAX had
been available.

Error messages indicate the position of the
previous syntax error. In this example, line
996 contains the first syntax error and line
602, which contains the second, references
line 596 as the previous syntax error.

2-12

Compiling Programs and Units

Compiler Options

You may direct some of the compiler's actions
by the use of compiler options embedded in the
source code. Compiler options are a set of
commands that may appear within
"pseudo-comments." A pseudo-comment is like
any other Pascal comment (it is surrounded by
"(*" and '*)', or by '{' and '}'). However, a
dollar sign immediately follows the left-hand
delimiter, for example:

T L

(*$U MOLD.CODE*)

C{ST4,5-,L8) -
(kSR o e *

There are two kinds of compiler options:

"switch" options and "string" options. A
switch option is a letter followed by a '+',
'-', or '"', A string option is a letter

followed by a string. (In the examples above,
the second is a string option; the others are
switch options.) A pseudo-comment may contain
any number of switch options (separated by
commas), and zero or one string options. If a
string option is present in a pseudo-comment,
it must be the last option. The string 1is
delimited by the option letter and the end of
the comment.

If the pseudo-comment uses '(*' and '*)', the

string in a string option may not contain an
1!

2-13

Compiling Programs and Units

Some options may appear anywhere within the
source text. Others must appear at the
beginning of the file (before the reserved
word PROGRAM or UNIT).

Switch options are either toggles or stack
options. If a switch option is a toggle, a
'+' turns it on, and a '-' turns it off. The
options 'I' and 'R' are '"stack options," as
are the conditional compilation flags (see
below).

With each stack option, the current state
(either '+' or '-') is saved on the top of a
stack (up to 15 states deep). The stack may
be "popped" by a '*' (thus re-enabling the
previous state of that option). If the stack
is "pushed" deeper than 15 states, the bottom
state of the stack is lost. If the stack is
popped when it is empty, the value is always
1 !

X » (SI.—} S .’r.:ur'renf value is :_'-'. = r;o _I/0 checking

(:SIL{) e c':u.rrent value is '+'. : :

{s1’ e b, : } ... current \)al.;),e is '-' again
- $T ."_ e current va'i,ue‘is-_'-i'; Vbeca‘use_'th'i-s. was the default
? {81 L. F Jess current va!.ug Asiicty becauvsve stack Ais. now empty

2-14

Compiling Programs and Units

The individual compiler options are described
below in alphabetical order. If you don't use
any compiler options, their default wvalues
will be in effect. Here are the default
values for the compiler options:

{$R+,I+,L-,Ut P4}

These remain in effect unless you override
them.

The $Q option defaults to @ if HAS SLOW
TERMINAL is false and Q+ if HAS SI.OW TERMINAL
is true. (HAS SLOW TERMINAL is a data item in
SYSTEM.MISCINFO which indicates whether or not
you have a hard copy terminal or a screen).

Conditional compilation is also controlled by
compile-time options as described below.

$B — Begin Conditional Compilation

$B is a string option. It starts
compilations of a section of conditionally
compiled source code. See the section on
conditional compilation, below.

$C — Copyright Field

$C is a string option. It places the string
directly into the copyright field of the
code file's segment dictionary. The purpose
of this is to have a copyright notice
embedded in the code file.

2-15

Compiling Programs and Units

$D - Conditional Compilation Flag

$D is a string option. It is used to
declare or alter the value of a conditional
compilation flag. See the section on

conditional compilation, below.

$D - Symbolic Debugging

There are two $D compiler options. This one
is a switch option. $D+ turns on symbolic

debugging information. $D- turns off
symbolic debugging information. The default
is $D-. (See Chapter 5 for more informaton

about this compiler option.)

$E — End Conditional Compilation

"E" is a string option. It ends a section
of conditionally compiled source code.

$I - I/0 Check Option

There are two options named by $I. The
first is a stack switch option (IOCHECK).

$I+, which is the default, instructs the
compiler to generate code after each I/O
statement in a program. This code verifies,
at run-time, that the I/O operation was
successful. If the operation wasn't, the
program terminates with a run-time error.

2-16

Compiling Programs and Units

$I- instructs the compiler not to generate
any I/O checking code. In the case of an
unsuccessful I/0 operation, the program
continues.

When you use the $I- option, your programs
should specifically test IORESULT (an
intrinsic p-System function) when there is
the chance of an I/0 failure. If $I- is
used and you don't test IORESULT, the
effects of an I/O error are unpredictable.

During program development you should
probably use 3$I+. When your program 1is
thoroughly debugged, you may wish to use $I-
since less memory space is required without
the I/O checking code. Also, you may wish
to intercept I/O errors in your program.
(For example, you may enter something
incorrect from the keyboard. Rather than
terminating with an I/0 error, your program
could prompt you to correct the problem and
try again.)

$I - Include File

This 1is a string option. The string
(delimited by the letter 'I' and the end of
the comment) is interpreted as the name of a
file. If that file can be found, it is
included in the source file and compiled.

- {$I PROG2} = -

2-17

Compiling Programs and Units

This includes the file PROG2.TEXT in the
program's source.

If the initial attempt to open the include
file fails, the compiler concatenates
".TEXT" to the file name and tries again.
If this second attempt fails, or an I/O
error occurs while reading the include file,
the compiler responds with a fatal syntax
error.

In order that included source may carry its
own declarations, an include file may
contain CONST, TYPE, and VAR declarations,
optionally followed by routine declarations.
If this is the case, then the {$I...}
comment must precede any routine
declarations in the main program.
Otherwise, the include file must follow
normal Pascal ordering.

Include files may be nested up to three
files deep (but no deeper).

Note that if a file name begins with a '+'
or '-', a blank must be inserted between the
letter 'I' and the string. For example:

(*$1 +PROG2*)

2-18

Compiling Programs and Units

$IL. — Compiled Listing

You may use $L either as a toggle switch
option or a string option. When used as a
toggle, it turns the listing on or off at
that point in the source text. When used as
a string option, it indicates the name of
the listing file.

Here are two examples of $L with a string
option:

(#$L LIST.TEXT#)
(AL PRINTER:®)

The first example indicates that the
compiled listing is to be saved on disk as
the file LIST.TEXT. The second example
sends the listing to the printer.

When used as a toggle, $L+ turns the listing
on and $L-turns it off. Using these
options, you can list only parts of a
compilation if you wish. The default for
the toggle is $L- if you have not named a
listing file using the compiler's prompt or
using $L with a string option. The default
is $L+ if you have named a listing file in
either of these ways. No matter which way
you name the listing file, you can switch
the listing on or off using $L+ or $L-—.

2-19

Compiling Programs and Units

If you don't specifically name a listing
file and %L+ is in effect, the compiler
writes to *SYSTEM.LST.TEXT.

You should note that listing files which are
sent to disk files may bhe edited as any
other text file, provided they are created
with a .TEXT suffix. Without the .TEXT
suffix, the p-System treats the listing as a
data file. With the $L option, .TEXT is
never appended. However, from the
compiler's prompt for a listing file, .TEXT
is always appended (unless you enter it
specifically).

$N - Native Code Generation

This is a swtich option. $N+ outputs
compiler information which allows code
generation to take place. $N- doesn't
output this information. The default is
$N-. This option is discussed in the Native
Code Generator section which is part of the
Optional Products Reference Manual.

$P — Page and Pagination

The compiler can place page breaks in the
compiled listing. It does this so that
listings sent to the printer (or listings
sent to files and later T(ransferred to the
printer) break across page boundaries. A
form feed character (ASCII FF) 1is output
every 66 lines if $P+ is in effect (this is
the default). If you don't want this, you

2-20

Compiling Programs and Units

should use $P-.

You can specifically cause a page break at
any point in a compiled listing by using the
$P option without a plus or minus sign.

$Q - Quiet

This 1is used to suppress the compiler's
standard output to the console. $Q+ causes
the compiler to suppress this output and $Q-
causes 1t to resume outputting status
information.

$R — Range Checking

$R is a stack switch option. The default,
$R+, causes the compiler to output code
after every indexed access (for example, to
Pascal arrays) to check that it is within
the correct range. This 1is called range
checking. $R- turns range checking off.

Programs compiled with the $R- are slightly
smaller and faster since they require less
code. However, if an invalid index occurs
or a invalid assignment is made, the program
isn't terminated with a run-time error.
Until a program has been completely tested,
it is suggested that you compile with the R+
option left on.

2-21

Compiling Programs and Units

$R2 and $R4 - Real Size

$R2 causes the code file's floating point
arithmetic operations to be performed with
two word (32-bit) precision. $R4 causes
four word (64-bit) precision. The default
real size depends upon the particular PME
that you are using (that is, if your PME
runs four word reals, the default is four
words) . This directive must occur before
the first symbol in a compilation that isn't
a comment.

NOTE: If you attempt to run a code file
with one real size using a system configured
for another real size, you will receive
execution error 17 (real size mismatch).

$T - Title

$T is a string option. The string becomes
the new title of pages in the listing file.

$U — Use Library

There are two options indicated by $U. One
is a string option (Use Library). The
other, described below, is a toggle switch
option (User Program).

2-22

Compiling Programs and Units

With the Use Library option, the string is
interpreted as a file name. This file
should contain the unit(s) that your program
is about to use. If the file is found, the
compiler attempts to locate the unit(s) that
it needs for the subsequent USES
declarations. If a particular unit isn't
found there, the compiler 1looks in
*SYSTEM.LIBRARY.

If a client (program or unit) contains USES
declarations but no $U option, the compiler
looks for the used units first in the source
file itself, and then in *SYSTEM.LIBRARY.

The following is an example of a valid USES
clause using the $U option:

USES UNIT1,UNIT2, { Found in *SYSTEM.LIBRARY }
{$U ‘A.CODE} B 3 .
UNIT3, " { Found in A.CODE }
{$U B.LIBRARY)} - : 2
UNIT4,UNIT5; € Found in B.LIBRARY }

$U — User Program

This option is used to specify whether the
compilation is your compilation, or a
p-System compilation. If present, it must
appear before the heading (that is, before
the reserved word PROGRAM or UNIT).

2-23

Compiling Programs and Units

When the default $U+ is in effect, your
program is indicated. The $U- option allows
system programmers to compile units with
names that are predeclared in the p-System.
These units are actually part of the
p-System, itself. $U- also sets $R- and
$I-.

In general you should never use this option,
unless you need to compile GOTOXY (see the
Adaptable System Installation Manual).

Conditional Compilation

You may conditionally compile portions of the
source text. At the beginning of a program's
text you can set a compile-time flag which
determines whether or not the conditionally
compiled text will be compiled.

In order to designate a section of text as
conditionally compilable, you must delimit it
by the options $B (for begin) and $E (for
end). Both of these options must name the
flag which determines whether the code between
them is compiled. The flag itself is declared
by a $D option at the beginning of the source.
$D options may be used at other locations in
the source to change the value of an existing
flag.

2-24

Compiling Programs and Units

Here is an example:

{3 DEBUG} (declares DEBUG. and sets it TRUE} :
PROGRAM SIMPLE; :

: _'BEGIN

(SB DEBUG} {if DEBUG is TRUE, this sect1on is comp1Led}
WRITELN('There is a bug.'); :
{SE DEBUG} . {this ends the section)}

(SB DEBUG-} {if DEBUG is FALSE, this section is compxled}'
URITELN(‘Noth1ng has failed. ') P
“{SE DEBUG} P =

3 END (SIMPLE),

Fach flag in a program must appear in a $D
option before the source heading. The name of
a flag follows the rules for Pascal
identifiers. If the flag's name is followed
by a '-', that flag is set false. The flag
may be followed by a '+', which sets it true.
If no sign is present, a flag is true. The
flag's name may also be followed by a '“' as
shown below.

The state of a flag may be changed by a $D
option which appears after the source heading,
but the flag must have first been declared
before the heading.

2-25

Compiling Programs and Units

The $B and $E options delimit a section of
code to be conditionally compiled. The $B
option may follow the flag's name with a '-',
which causes the delimited code to be compiled
if the flag is false. In the absence of a
'-', the code is compiled if the flag is true.
The flag's name may also be followed by a '+'
or '~'; these are ignored. In a $E option,
the flag's name may be followed by a '+', '-',
or '"'; these symbols are ignored.

The state of each flag is saved in a stack,
Jjust as the state of a stack switch option is
saved. Thus, using a $D option with '~'
yields the previous value of the flag. Each
flag's stack may be as many as 15 values deep.
If a 16th value is pushed, the bottom of the
stack is lost. If an empty stack is popped
with '*', the value returned is always false.

If a section of code isn't compiled, any
pseudo-comments it may contain are ignored as
well.

: {$D DEBUG-} (declares DEBUG and sets it FALSE)
: 'PROGRAH SIMPLE, & ;

BEGIN - Por
e) DEBUG+} (changes DEBUG to TRUE} " A’

'CSB DEBUGY ~ €if DEBUG" is TRUE, th1s section is comp1Led} s
" WRITELN('There is a bug."); . :
{$E DEBUG} <{this ends the sec§1on)

{SD‘DEBUG : ;) {restores previous value of DEBUG)
2 “Ainein this.-case, - -FALSEY -
{s$8 DEBUG-) {1f DEBUG is FALSE, this-section is compxled}
WRITELN('Nothing has failed.),
" -{SE DEBUG) ‘ 2

r—reuorcsxans}, ot

2-26

Compiling Programs and Units

Selective Uses

Selective uses allows your programs to choose
the items that you wish to use from a unit's
interface section. You can often take
advantage of this to reduce compile-time space
requirements. Also, compilation time can be
reduced. Both of these are especially
noticeable when you are using units with large
interface sections from which you only require
a few items. This is because the rest of the
interface section doesn't need to be compiled.

Also, selective wuses is valuable for
documentation purposes in that you can easily
see the specific items that a client needs
from the unit it uses.

The following diagram explains the syntax of
selective uses:

~

USES unit (ident) H
identifier

In this diagram, ident can be a constant,
type, variable, or routine (procedure,

process, or function). Here is an example of
a selective uses statement:

- USES. MYUNIT ‘('A'_co'wsf, VART, VAR2, MY_ROUTINE); £

2-27

Compiling Programs and Units

If a selected declaration isn't present in the
interface text, an error results during
compilation.

Any constant or type used in a selected
declaration must be included in the selective
uses list. For example, if VARl is of type
TYPE1l, the list above isn't acceptable unless
TYPE1 is added (even though TYPEl may not be
directly required by the client Dbeing
compiled).

You should list only the name of a routine.
No explicit listing of parameters is needed.
However, any types or constants that the
parameters use must be explicitly included.

Most identifiers must be named explicitly in
the identifier list if they are to be made
available to the compiled module. Identifiers
are available implicitly in these situations:

@ VWhen an enumerated constant type 1is
explicitly 1listed, all the constant
identifiers of the enumeration are
implicitly available.

@ When a record type is explicitly listed,
all its field names are implicitly
available (for example, see the following
listing under unit A, line 12, info rec).

2-28

Compiling Programs and Units

Here is an example of selective uses. Unit A
is selectively used by Units B and C.

2-29

Compiling Programs and Units

Unit B;
interface
{$U a.code)
uses a({const} maxchar,
{include for type ALPHA}
{types)} alpha,
{include for variable WHICH)
byte,
{include for FIRST and LAST}
{vars } first,
{include for proc CHANGE}
Last
{include for proc CHANGE}

sing A

maxchar=7;
byte=0..255;
alpha=packed array
.[0..maxchar] of char;
_first,last:byte;

’

proéedure change(which:alpha);
impleméntabiqn

procedure change;
begin
if which=' ' then
last:=first
else 7
first:=last;
end;

end; {unit B}

2-30

Compiling Programs and Units

unit C;
- interface
 implementation
{$U a.code}
uses a({const)}. maxnum,
- Linclude for type CODEBLOCK} -
s maxchar,
{include for: type ALPHAY
8 ¥ "byte, -
“{include for type CODEBLOCK}
; - {type} alpha, .
{include for variable MINE}
. 3 info) rec,
{include for PTR_. INFO RECY
T ptr_info_rec,
{include for func UPDATE}
S codeblock, .
'{incLude.for INFO_REC)
R next,
{include- for func UPDATE)
sing A
maxnum=1000;
maxchars7; . X
byte=0..255; : Iy
codeblock-packed array
[0..maxnum] of. byte;:
alpha=packed array
L0..maxcharl of char, i =
ptr_info rec- L i - .info_rec;.
1nfo rec=record " . TS PRI st
_code: codeb{ock, N
Llink,rlink: ptr 1nfo rec,
! wendp ="
next= =char; -
function update &
; (var info:ptr_: info rec) next,
€£func) - update) %
- Us1ng B
b-
var - { ;
. info:ptr_info rec; -
mine: atpha,

begin b yE AR -

- new(info); - LR AR i J
new(info - e —“artink) oy
info-'= .. : ; : sLlink:=nil;

- mine:="newsystm'; - "~ : - : P i
Py update(1nfo)- o ir then 2

ur1teln('1nfo updated’) Do 2 g
‘else %a ; : R D e S
change(m1ne),_ T ¥ : g
-end."

2-31

Compiling Programs and Units

SEGMENTS, UNITS AND LIBRARIES

Segments, units, and libraries are three major
facilities that help you manage large programs
and effectively use main memory. These
facilities enable very large programs to be
developed in a microsystem environment; in fact,
these facilities were used extensively in
developing the system, itself.

Segmenting a Program

An entire program need not to be in main
memory at run-time. Most programs can be
described in terms of a working set of code
that is required over a given time period.
For most—if not all—of a program's execution
time, the working set is a subset of the
entire program, sometimes a very small subset.
Portions of a program that aren't part of the
working set can reside on disk, thus freeing
main memory for other uses.

When the p-System executes a code file, it
reads code into main memory. When the code
has finished running, or the space it occupies
is needed for some action having higher
priority, the space it occupies may be
overwritten with new code or new data. Code
is swapped into main memory a segment at a
time.

2-32

Compiling Programs and Units

In its simplest form, a code segment includes
a main program and all of its routines. A
routine may occupy a segment of its own; this
is accomplished by declaring it a segment
routine. Segment routines may be swapped
independently of the main program; declaring a
routine a segment is useful in managing main
memory.

Routines that aren't part of a program's main
working set are prime candidates for occupying
their own segment. Such routines include
initialization and wrap-up procedures and
routines that are used only once or only
rarely while a program is executing. Reading
a procedure in from disk before it is executed
takes time. Therefore, the way that you
divide up a program is important.

UCSD Pascal, FORTRAN, and BASIC use their own
syntax for creating separate segments. Refer
to each particular language's manual for more
information on this.

Separate Compilation — Units

Separate compilation is a technique whereby
segments of a program are compiled separately
and subsequently executed as a coordinated
whole.

2-33

Compiling Programs and Units

Many programs are too large to compile within
the memory confines of a particular
microcomputer. Such programs might
comfortably run on the same machine,
especially if they are segmented properly.
Compiling small pieces of a program separately
can overcome this memory problem.

Separate compilation also allows small
portions of a program to be changed without
necessarily affecting the rest of the code.
This saves time and is less error prone.
Libraries of correct routines may be built up
and used in developing other programs. This
capability is important if a large program is
being developed and is invaluable 1if the
project involves several programmers.

These considerations also apply to assembly
language programs. Large assembly programs
(such as p-machine emulators) can often be
more effectively maintained in several
separate pieces. When all these pieces have
been assembled, the L(inker puts them together
and installs the linkages that allow the
various pieces to reference each other and
function as a unified whole.

You may also want to reference an assembly
language routine from a higher-level language
host program; for example, Pascal or FORTRAN.
This may be necessary for performance reasons
(assembly language is faster than p-code, the
output of the compilers) or to provide
low~level, machine-dependent or
device-dependent handling.

2-34

Compiling Programs and Units

Using the L(inker, the p-System allows
assembly language routines to be linked with
other assembly routines or into higher-level
clients (programs or units). For more
information about this, see the Assembler
Reference Manual.

In UCSD Pascal, separate compilation is
achieved by the unit construct—a unit being a
group of routines and data structures. The
contents of a unit usually relate to some
comon application, such as screen control or
data file handling. A program or another unit
may use the routines and data structures of a
unit by simply naming it in a USES
declaration. The term "host" refers to such a
program, and ‘'"client compilation module"
refers to a program or unit that uses another
unit. In addition to being a separately
compiled module, a unit is also & code
segment, in that it can be swapped—as a
whole—in and out of memory. You should note
that it is possible for a unit's source text
to be embedded in the client's source text if
you don't want to compile a unit separately.

A unit consists of two main parts: (1) the
interface section, which can declare
constants, types, variables, procedures,
processes, and functions which are public
(available to any client module); and (2) the
implementation section, in which private
declarations can be made. These private
declarations are available only within the
unit and not to client modules.

2-35

Compiling Programs and Units

Pascal, BASIC, and FORTRAN use their own
syntax for separate compilation. (For more
information about this, refer to each
language's manual.)

Libraries

This section describes where you may place the
code files that contain units so those units
are available at compile-time or run-time.
Run-time availability is described first.

There are four places where units may reside
when the client's code is executed:

1. Within the client's code file.
2. In the SYSTEM.LIBRARY on the system disk.
3. In a user library.

4, In the operating system (SYSTEM.PASCAL).

The operating system units (described in the
next chapter) are standard code. Don‘t place
units that you write there. The other three
options are available for units that you write
or use.

2-36

Compiling Programs and Units

In order to place a unit directly into a
client's code file, use the Jibrary utility,
described in Chapter 6. Once the unit's code
and the client's code are unified like this,
the unit is available at run-time.

SYSTEM.LIBRARY generally contains standard
units, such as the long integer package. You
can add your units to this file with the
Library utility. If you aren't currently
using SYSTEM.I.IBRARY, you can simply rename a
unit's code file "SYSTEM.LIBRARY" and place it
on the boot disk. Of course, you can add more
files with the Library utility. All wunits
that reside in SYSTEM.LIBRARY are available to
clients.

A user library is any code file. The name of
this code file must be in a "library text
file." The standard default library text file
is called USERLIB.TEXT and must be on the
system disk. For example, if you create a
USERLIB.TEXT containing these lines:

DISK2:SOME.UNITS
*MY.LIB
-ANOTHER.CODE

These three code files are designated as user
libraries. You don't have to specify the
".CODE" here. For example, the first file may
be either DISK2:SOME.UNITS.CODE or
DISK2:SOME.UNITS, depending upon which file is
actually found. All three of these files may
contain units which are then available for you
to use.

2-37

Compiling Programs and Units

When the p-System 1is searching several
libraries for a unit, it first searches all of
the user libraries in the order that they
appear in the default library text file. It
then searches *SYSTEM.LIBRARY. If you wish to
include *SYSTEM.LIBRARY in the Ilibrary text
file, it 1is searched in the order that it
appears. (If no 1library text file is used,
only *SYSTEM.LIBRARY is searched.)

You can use a library text file, other then
USERLIB.TEXT. Do this with the 'L’' execution
option. For example, if you select X(ecute
from the Command menu and respond:

Execute what file? L-_=USERLI__BZ_

During compile-time, as opposed to run-time,
the code for a unit may reside in either of
two locations:

1. *SYSTEM.LIBRARY

2. A code file specified in the text you are
compiling.

2-38

Compiling Programs and Units

Pascal, BASIC, and FORTRAN each have a way to
indicate the names of units that are to be
used. Each language also has a method for
specifying the code files that contain those
units. If you don't indicate a particular
code file, the compilers search
*SYSTEM.LIBRARY for any units you want to use.
If you do indicate a code file, the compilers
look there for the units. You can specify one
unit as being in a particular code file, and
another unit as being in a different code file
if you wish.

2-39

Compiling Programs and Units

GENERAL TACTICS

This section describes the use of segments and
units. It presents a scenario for designing a
large program, with some useful strategies.

Units and segments divide large programs into
independent tasks. On microprocessor systems,
the main bottlenecks in developing large
programs are:

@ A large number of variable declarations that
consume space while a program is compiling.

@ Large pieces of code that use up memory space
while the program is executing.

Units address the first problem by: (1)
allowing separate compilation; and (2)
minimizing the number of variables needed to
communicate between separate tasks. Segments

alleviate the second problem by only requiring
code that is in use to be in main memory at any
given time; during this time, unused code
resides on disk.

You can write a program with run-time memory
management and separate compilations already
planned, or you can write as a whole and then
break it into segments and units. The latter
approach is feasible when you're unsure about
having to use segments or quite sure that they
will be used only rarely. The former approach
is preferred and easier to accomplish.

2-40

Compiling Programs and Units

The following steps outline a typical procedure
for constructing a relatively large application
program:

1. Design the program (user and machine
interfaces).

2. Determine needed additions to the library of
units, both general and applied tools.

3. Write and debug units and add to libraries.
4, Code and debug the program.

5. Tune the program for better performance.

During design, try to use existing procedures to
decrease coding time and increase reliability.
You can accomplish this strategy by using units.

To determine segmentation, consider the expected
execution sequence and try to group routines
inside segments so that the segment routines are
called as infrequently as possible.

While designing the program, consider the
logical (functional) grouping of procedures into
units. Besides making the compilation of a
large program possible, this can help the
program's conceptual design and make testing
easier.

2-41

Compiling Programs and Units

Units may contain segment routines within them.
You should be aware that a unit occupies a
segment of its own; except, possibly, for any
segment routines it may contain. The unit's
segment, like other code segments, remains
disk-resident except when its routines are being
called.

Steps 2 and 3 of the typical construction
procedure are aimed at capturing some of the new
routines in a form that allows them to be used
in future programs. At this point, you should
review, and perhaps modify, the design to
identify those routines that may be useful in
the future. In addition, useful routines might
be made more general and put into libraries.

Program and test the Library routines before
moving on to programming the rest of the
program. This adds more generally useful
procedures to the library.

The interface part of a unit should be completed
before the implementation part, especially if
several programmers are working on the same
project.

Tuning a program usually involves performance
tuning. Since segments offer greater memory
space at reduced speed, performance is improved
by: (1) turning routines into segment
routines; or (2) turning segment routines back
into normal routines. Either route is feasible.
Pay some attention to the rules for declaring
segments.

2-42

Compiling Programs and Units

For information on languages, refer to the
appropriate language manual.

2-43

CHAPTER 3

USER INTERFACE

User Interface

INTRODUCTION

This chapter describes several facilities that
can assist you 1n presenting a clean and
portable user interface from your programs.

The first section describes run-time facilities
that enable you to create your own applications
environment. The p-System can run invisibly
under your application using these facilities.

The next section describes the screen control
unit. This unit, which is part of the operating
system, can be used by your programs to easily
handle the basic screen-oriented functions (such
as clearing the screen, moving the cursor, and
so forth).

Next, the error handler unit is covered. It
enables your programs to intercept certain kinds
of system errors and display your own messages.
You might want to do this so that the error
messages are specific to your particular
application, or they are in a different
language, and so forth.

After this, the command I/O unit is described.
This unit allows you to redirect I/O and chain
programs together. It is especially useful in
conjunction with the run-time facilities in the
first section.

3-3

User Interface

RON-TIME APPLICATION FACILITIES

As an applications developer, you may create
programs which are automatically executed by the
p-System. This exempts the end user from having
to X(ecute these programs. The underlying
p-System can even be completely hidden from such
a user. You may present menus and prompts that
apply specifically to your particular
application.

If you name an executable code file,
SYSTEM,STARTUP, and place it on the system disk,
that program is executed when the p-System is
booted. This program begins before the
p-System's Command menu or welcome message 1is
displayed.

SYSTEM.MENU operates similarly. It is executed
each time the Command menu would normally be
displayed.

Generally, SYSTEM.MENU is more useful for
creating your own applications environments
since it is called up repeatedly. Typically,
you might place a simple menu-driven program in
SYSTEM.MENU. This program displays the outer
menus or prompts and services global issues
related to your application package. When you
select a component of your package, you would
use the CHAIN procedure (within the operating
system's Command I/O unit, described later in
this chapter). CHAIN allows another program to
be executed (without using the X(ecute command
or displaying the Command menu in between).
When that program completes its run, SYSTEM.MENU
is again called. In this sort of scenario, the

3-4

User Interface

p—System's Command menu never appears.

Single-Use Run-Time System

The run-time system is a version of the
p-System designed to package and execute a
single application program or series of
related programs called by the p-System chain
mechanism just described. This version of the
p-System never reaches the Command menu. The
p-System components, such as the editor and
filer, aren't a part of this package. The
package may contain SYSTEM.STARTUP, but must
contain SYSTEM.MENU.

User Interface
System Initialization

The following diagram illustrates the flow of
control each time the p-System is initialized:

SYSTEM INITIALIZATION

EXECUTE *SYSTEM. STARTUP
(IF POSSIBLE)
IS CHAIN OF PROGRAMS)NO
EMPTY?
YES EXECUTE CHAINED ———
PROGRAM
IS *SYSTEM. MENU > YES
EXECUTABLE?
NO EXECUTE —————
*SYSTEM.MENU
SINGLE-USE
TURNKEY SYSTEM? > YES » HALT
NO

\d
MAIN SYSTEM PROMPT

User Interface

THE SCREEN CONTROL UNIT

The screen control unit is a unit within the
operating system which your programs can use to
easily perform several useful screen-oriented
tasks. These include blanking out a line or the
entire screen, placing the cursor at a
particular position, displaying p-System style
menus, and so forth. These tasks are performed
in a way that makes your programs transportable
across different video displays.

You should realize that there is a special
screen control unit for ANSI (American National
Standards Institute) terminals. (These
terminals use three character sequences. Most
other terminals use, at most, two character
sequences.) However, the interface section of
this special version of the screen control unit
is no different from the standard unit. This
means that your programs don't have to be
changed.

To use the screen control unit at compile time,
you must have a copy of SCREENOPS.CODE with its
interface section. A Pascal program must
contain USES declaration similar to this:

USES {SU SCREENOPS.CODE} SCREENOPS;

At run-time, only the operating system needs to
be available since it contains the SCPEENOPS
unit (only without the interface section).

User Interface

SCREENOPS Interface Section

Here is a listing of the interface section for
SCREENOPS :

unit screenops;
interface

const
sc_fill ten = 11;
$C “eol = 13;

type
sc_chset
sc_misc_rec

set of char;
packed record
height, width : 0..255;
can break, slow, xy crt, lc_crt,
can upscroLl, can dounscroLL : boolean;
end;
sc_date_rec = packed record
month : 0..12;
day : B.43%2
year : 0..99;
; end;
sc_info_type = packed record
e sc_version : string;
sc_date : sc_date rec;

spec_char : sc chset, {Characters not to echol}
misc_info : sc_mi sc_rec;
end;
sc_long_string stringl255]1;

sc_scrn_command (sc_whome, sc_eras_s, sc_erase eol, sc_clear_Llne,

sc_clear_scn, sc_up_cursor, sc_down cursor,

sc_left_cursor, sc_right_cursor);

sc_key command = (sc_backspace _key, sc.dcl_key, sc_eof key, sc_etx key,
sc_escape_| key, SC_(del _key, sc_up key, SC_ down key,
sc_lLeft key, sc r1ght key, sc_| not. Legal, sc_insert_key,

: sc deLete . key) ;
sc_choice

= (sc_get, sc_g1ve)'

sc_window = packed array [0..0] of char;
sc_tx_port. = record

row, col, . { screen relative}

height, width, { size of txport (zero based)}

cur_x, cur_y : integer;

{cursor positions relative to the txport }
end; {
{entries 4..syscom .subsidstart-1 are valid}
sc_err_msg_array = array [4..4] of string; <{accessed $R-}
var

sc_port : sc_tx port;
sc_printable chars : sc_chset;

User Interface

sc_errorline : integer; SRR
Sc_errormessage : . 57 s,c_,err_'msg_a_rray;

procedure sc_use info(do whatisc_choice; var t_info:sc info‘type);
procedure. sc_use_port(do what:sc_choice; var t_port sc_tx port),
procedure sc_erase_to, eol(x,L1ne 1nteger)-
procedure sc left,
procedure sc_r!ght,
procedure sc_up;
procedure sc_down; ‘
procedure sc getc_ch(var chichar; return_on r match sC chset)'
procedure sc_ “clr *_screen;
procedure se “clr Line (y: 1nteger)-
procedure sc home,
procedure sc_eras_eos (x,line:integer);
procedure sc_goto xy(x, Line:integer);
procedure sc clr_cur l1ne,
function sc_find x:integer;
function sc - - find) | y:integer;
function sc_scrn has(uhat sc_scrn_command) : bootean,
function sc has key(what sc key command) boolean;
function sc ;_map_(y crt commandCvar | k_chichar):sc_key command"
function sc prompt(t1ne :sc_long_: str1ng; X_CUrsor,y_ cursor,x . pos,
:) where: 1nteger~ return_on_match:sc_¢ chset-
p no_char:back:boolean; “break char:ichar): ‘char;
function sc_check char(var buf:sc u1ndou var buf 1ndex bytes Left 1nteger)
. -boolean,
function sc_space_wait(flush:boolean): booLean,
procedure sc_1n1t,

User Interface

Routines within SCREENOPS

This section describes the routines within the
screen control unit. The text ports mentioned
here are rectangular portions of the screen
that may be defined as smaller than the real
screen. At present, this feature isn't fully
implemented. Where text ports are mentioned
in this section, the entire screen is the
default.

Procedure SC Init;

Usually, only the operating system calls this
procedure. It initializes all the screen
control tables and variables.

Procedure SC Clr Cur Line;

Erases the current line.

Procedure SC Clr Line (Y: integer);

Clears line number Y within the current text
port.

Procedure SC Clr_Screen;

Clears the screen.

3-10

User Interface

Procedure SC Erase to EOL
(X, Line: integer);

Starting at position (X, Line) within the

current text port, erases everything to the
end of the line.

Procedure SC_Eras EOS
(X, Line: integer);

Starting at position (X, Line) within the

current text port, erases everything to the
end of the screen.

Procedure SC Left;

Moves the cursor one character to the left.

Procedure SC _Right;

Moves the cursor one character to the right.

Procedure SC Up;

Moves the cursor one line up (in the same
column).

Procedure SC_Down;

Moves the cursor one line down.

3-11

User Interface

Procedure SC_Home;

Moves the cursor to position 0,0 within the
current text port.

Procedure SC_GOTO_XY
(X, Line: integer);

Moves the cursor to position (X, Line).

Function SC_Find_X: integer;

Returns the column position of the -cursor,
relative to the current text port.

Funtion SC Find Y: integer;

Returns the row position of the cursor,
relative to the current text port.

Procedure SC_GetC _CH
(VAR CH: char;
Return_on Match: SC ChSet);

SC ChSet is a SET OF CHAR. This procedure
repeatedly reads from the keyboard into CH
until CH 1is equal to a member of
Return_on Match. The characters that you pass
in this set should all be capitals (if they
are alphabetic). If a lowercase alphabetic
character is received from the keyboard, it is
translated into uppercase before it is
compared to the characters within
Return _on Match.

3-12

User Interface

Function SC Space Wait
(Flush: Boolean): Boolean;

This function repeatedly reads from the
keyboard until a space or the ALTMODE
character is received. Before doing this, it
does a UNITCLEAR(1) if flush is true, and
displays 'Type <space> to continue’. It
returns true if a space wasn't read. After
reading a <space> successfully, this function
echoes a carriage return on the console.

3-13

User Interface

Function SC_Prompt
(Line: SC long_ String;
X Cursor, Y Cursor, X Pos,
Where: integer;
Return_on Match: SC ChSet;
No Char_ Back: Boolean;
Break Char: char): char;

This function displays the menu line
(SC long String is a STRING [255]) in the
current text port at (X Pos, Where). The
cursor is placed at (X Cursor, Y Cursor) after
the prompt is printed. If X Cursor is 1less
than 0, the cursor is placed at the end of the
prompt. If the prompt is too large to fit
within the current text port, it is broken up
into several pieces, but only at the
Break Char. You can view different parts of
the prompt (cycling through them) by entering
'?'. If you only want to display the prompt,
No Char Back should be true. In this case,
SC Prompt returns a function value of NUL,
ASCII O. If you want to receive a character
from the user at the keyboard, No Char Back
should be false. (In this case, SC Prompt
returns a functon value of the character
received.) The keyboard is repeatedly read
until the character read matches one within
the Return on Match set. This set should be
all capitals (for alphabetic characters) since
your input 1is converted to uppercase when
necessary.

3-14

User Interface

Function SC Check Char
(VAR Buf: SC Window;
VAR Buf Index,
Bytes Left: integer): Boolean;

While a string is being read, this function
may be called to see if a backspace or a
rubout (DEL) has been read. If so, the input
buffer is altered accordingly, and true is
returned. Buf is a 1line on the screen,
Buf Index indicates the cursor position within
Buf, and Bytes Left is the number of
characters to the right of the cursor.

Function SC Map CRT Command

(VAR K CH: char): SC Key Command;

SC Key Command is a type consisting of the

following elements: SC_Backspace_ Key,
SC DC1 Key, SC_EOF Key, SC_ETX Key,
SC Escape Key, 'SC DEL Key, (T4 Up _Key,

SC Down Key, SC Left Key, SC Right Key,
SC Not Legal. The character passed is mapped
into one of these elements. SC Not legal is
where all characters are mapped which don't
fit into one of the other ten categories.
Prefix characters are recognized by this
function. If you pass a prefix character, a
nonechoed read is done to get the next
character (before the mapping is performed).
In this case, K CH is returned as that
character. For the ANSI version of Screenops,
another read may be done (since three
character codes are used on ANSI terminals).

3-15

User Interface

Function SC_Scrn_Has
(What: SC Scrn_Command): Boolean;

SC Scrn Command is a type consisting of the
following elements: SC_Home, SC Eras S,
SC_Eras EOL, SC Clear Lne, SC Clear Scn,
SC Up Cursor, SC Down Cursor, SC Left Cursor,
SC Right Cursor. This function returns TRUE
if the CRT has the control character passed.

Function SC Has Key
(What: SC Key Command): Boolean;

SC_Key Command consists of the elements
previously 1listed in the description of
SC Map CRT Command. This function returns

true if the keyboard generates the character
passed.

3-16

User Interface

Procedure SC Use_ Info
(Do_What: SC Choice;
VAR T Info: SC_Info Type);

This function is used to pass information back
and forth between a program and the screen
control unit. Do What may either be SC Get or
SC Give and indicates whether the program is
getting information from the screen control
unit or giving information to it. T Info
contains various items to be either passed or
received. The following information 1is
contained within T Info.

SC_Version: string;
SC_Date: PACKED RECORD
2 Month: 0..12;
‘Day: 0..31;
Year: 0..99;
END;
Spec_| Char: SET OF char; (x Characters not to echo *)
M1sc Info: PACKED RECORD
Height, Width: 0..255;
Can Break, Slow, XY_CRT, LC_CRT,"
Can_UpScroll, Can_| DownScroll: Boolean;
END;

Procedure SC _Use Port
(Do _What: SC Choice;
VAR T Port: SC TX Port);

This function works 1like SC Use Info above.
The contents of T ' Port are either passed or
received from the screen control unit. T Port
contains the following information.

Row, Col,

Height, Width,
Cur X, Cur_ Y : integer;

3-17

User Interface

ERROR HANDLER UNIT

Under certain circumstances, the p-System
displays execution error messages. If a code
segment 1s needed and the disk containing it
isn't in the appropriate drive, you are asked to
replace the disk and press <space> to continue.
If a program attempts to divide by =zero or
access outside the bounds of a Pascal array, a
message 1indicates this and you are asked to
press <space>, at which point the p-System is
reinitialized.

When certain errors occur, your programs can
alter the message that is displayed. This is
useful for applications developers, especially
those whose customers speak languages other than
English.

Format of Error Messages

Error messages are displayed on one specified
80-column 1line. For example, when a code
segment is needed from a disk that isn't
present in the appropriate drive, the
following prompt is displayed:

o Need ,Segmernt;SEféNMVIé:v Pu.t‘ volume VOLNAME: in-um'-t- U then x.a'(:eés <§pa&e>' 5
This indicates that the segment SEGNAME wasn't
found on volume in device U. Place the volume

VOLNAME in the correct drive and press
<{space>. FExecution should continue normally.

3-18

User Interface

The following example shows the error message
that occurs when you press the p-System BREAK
key.

~ Program Interrupted by 'user-Seg PASCALIO P# 17 O# 310 <space> continues

After <space> 1s pressed, the p-System is
reinitialized.

System error messages, such as these, always
appear at a fixed position on the screen. The
default position is the bottom line. (Any
line can be specified, however.) A BEL
character (audible beep) is written to the
console device when the message 1is vwritten
out.

After pressing <space>, the message line
disappears; and, when possible, the cursor
returns to 1its previous position. If a
program uses UNITREADs or UNITWRITEs to the
console, the previous cursor position may be
lost. Use of GOTOXY (but not SC GOTOXY) may
also lose the previous cursor position. This
is because the p-System isn't informed of the
cursor position after these kinds of low-level
I/0 operations.

3-19

User Interface

User Control of Error Messages

Your program may change the line on which an
error message 1s displayed. It may also
change the actual message displayed when a
code segment is required from a disk that
isn't present in the appropriate drive for
blocked devices. If the code file is on a
subsidiary volume, set the message for the
principal volume.

The ERRORHANDLING wunit provides these
facilities. The file ERRORHANDL,CODE contains
this unit. To use FERRORHANDLING, a Pascal
program should have a declaration similar to
the following example.

USES €$U ERRORHAND.CODE} ERRORHANDLING;

Also, FERRORHANDLING must be available at
run-time, either in a library or placed into
the using program's code file with the Library
utility.

3-20

User Interface

The following procedures are available within
this unit:

Procedure Set_Error_Line
(Line:Integer);

Procedure Set User Message
(Drive:Integer; Mesg:String);

By calling SET ERROR LINE with the desired
line number as a parameter LINE, your program
may change the line on which p-System run-time
error messages are to be displayed. After the
call to SET ERROR LINE, any run-time error
messages are displayed on that 1line until
SET ERROR LINE is used again to specify
another line.

You may change the standard message for code
segments needed on disks that aren't present.
By calling SET USER MESSAGE with the DRIVE
parameter set to the physical device number
and the MESG parameter set to the desired
message string.

Then, 1if a code segment 1is required from a
missing disk in the unit for which your
program has designated a special error
message, that message 1is displayed. The
p-System then waits for you to press <space>,
whether or not your message actually indicates
that a space is needed. The message line is
subsequently erased; the cursor returns to its
former position, if possible; and execution
continues.

3-21

User Interface

CAUTION: Your message is destroyed by a
release if a MARK was called before a
SET USER MESSAGE.

NOTE: The physical device numbers are 4, 5,
and 9 through the maximum number for physical
disk as configured in SETUP.

For other kinds of execution errors, a
standard p-System message is displayed on the
message line. A fatal error always causes the
p-System to fail. For nonfatal errors, the
p-System waits for you to press <space>. The
message line 1is then erased, the cursor
returns to its former position, and execution
continues (most likely the p-System
reinitializes itself).

To proceed from a nonfatal error, press <esc>.

WARNING: Escaping from a nonfatal error is a
dangerous practice since system data may be
corrupted.

Error message values you set remain in effect
during the program run, but are reset at
program termination or whenever p-System
reinitialization occurs.

3-22

User Interface

Your program may reset the error handling
values to their default values at any time if
special output is no longer desired. The
missing code segment message can be reset by
passing a null string to SET USER MESSAGE.

Unknown results may occur on console devices
whose screen width 1is narrower than the
message to be displayed.

3-23

User Interface

THE COMMAND I/O UNIT

Command I/0O is a unit in the operating system.
From Pascal, your program should contain the
statement:

USES {$U commandio.code} COﬁMANDIO;

Then, the following procedures are available to
the program:

Procedure Chain
(Exec Options: String);

A call to CHAIN causes the system to X(ecute
EXEC OPTIONS after the calling program (the
chaining program) has terminated. The effect is
that of: (1) manually pressing 'X' to call
X(ecute; and (2) entering the characters in
EXEC OPTIONS. Neither the Command menu nor the
X(ecute prompt is displayed; the system goes on
to immediately perform the actions indicated by
EXEC OPTIONS.

If a program (or sequence of programs) contains
more than one call to CHAIN, the EXEC OPTIONS
are saved in a queue and performed on a
first-in-first-out basis before returning
control of the system to you.

To clear the queue, call CHAIN with an empty
string (for example, "CHAIN('');").

3-24

User Interface

An execution error or an error 1in an
EXEC OPTIONS string clears the queue, returning
control to you. A call to EXCEPTION, described
below, may also clear the queue.

CHAIN is a procedure in the operating system's
COMMANDIO unit; to use it, a program or unit
must declare 'USES COMMANDIO'.

Function Redirect
(Exec Options: String) : Boolean;

This should contain only option specifications
and not the name of a file to execute (to
execute a program from another program, see the
CHAIN intrinsic).

REDIRECT causes redirection by performing all
the options specified in EXEC OPTIONS. If all
goes well, it returns true. If an error occurs,
it returns false.

If an error occurs during a call to REDIRECT,
the state of redirection is indeterminate; this
is a dangerous condition. If REDIRECT returns
false, your program should follow it with a call
to EXCEPTION, in order to turnoff all
redirection. If you don't do this, the results
are unpredictable.

REDIRECT 1is a procedure in the operating
system's COMMANDIO unit; to use it, a program or
unit must contain the declaration 'USES
COMMANDIO'.

3-25

User Interface

Procedure Exception
(Stopchaining: Boolean);

EXCEPTION turns off all redirection. If
STOPCHAINING is true, then the queue of
EXEC OPTIONS created by CHAIN is also cleared
(see the intrinsic CHAIN).

Whenever an execution error occurs, an
EXCEPTION(TRUE) call is made (leaving
redirection on after an error leaves the system
in an indeterminate state).

EXCEPTION 1is a procedure in the operating
system's COMMANDIO unit; to use it, a program or
unit must declare 'USES COMMANDIO'.

3-26

User Interface

TURTLEGRAPHICS

Turtlegraphics 1is a package of routines for
creating and manipulating images on a graphic
display. These routines can be used to control
the background of the screen, draw figures,
alter old figures, and display figures using
viewports and scaling. It also contains
routines that allow you to save figures in disk
files and retrieve them.

The simplest Turtlegraphics routines are
intentionally very easy to learn and use. Once
you are familiar with these, more complicated
features (such as scaling and pixel addressing)
should present no problem.

A pixel is a single picture element or point on
the display.

Turtlegraphics allows you to create a number of
figures, or drawing areas. One such figure is
the display screen itself, and other figures can
be saved in memory. Each figure has a turtle of
its own. The size of a figure may be set by you
(it doesn't need to be the same size as the
actual display).

The actual display is addressed in terms of a
display scale, which may be set by you. This
allows your own coordinates to be mapped into
pixels on the display. All other figures are
scaled by the global display scale.

3-27

User Interface

You may also define a viewport, or window on the
display. This limits all graphic activity to
within that port.

Turtlegraphics is shipped in two ways. If the
p-System with Turtlegraphics is adapted to a
particular hardware configuration, then the
graphic routines are already tailored to the
display. The unit Turtlegraphics is already
installed in *SYSTEM.LIBRARY, and a program may
use 1its routines by including the following
declaration:

“USES Turtlégr.ap_hqu; (or an equivalent declaration i.r,\r'_BASI'c_’ or- ‘FORTVRA'N')‘ i

If Turtlegraphics is purchased as a separate,
configurable product, then you must write a
number of assembly language routines that
control the graphic display. These routines are
called by the Turtlegraphics unit and must be
written and tested before Turtlegraphics may be
used.

Turtlegraphics is accessible from FORTRAN and
BASIC. This is described later in this section.

3-28

User Interface

The Turtle

The turtle 1is an imaginary creature in the
display screen that will draw lines as you
move it around the display. The turtle can
move 1in a straight-line (Move), move to a
particular point on the display (Moveto), turn
relative to the current direction (Turn), and
turn to a particular direction (Turnto).

Thus, the turtle draws straight-lines in some
given direction. The color of the lines it
draws can be specified (Pen Color), and so can
the nature of the line drawn (Pen Mode).

Wherever the turtle is located, its position
and direction can be ascertained by three
functions: Turtle X, Turtle Y, and
Turtle Angle.

NOTE: The turtle may be moved anywhere; it
isn't limited by the size of the figure or the
size of the display. But, only movements
within the figure will be visible.

To use the turtle in a figure other than the
actual display, you may call Activate Turtle.

3-29

User Interface

The following paragraphs describe the routines
that control the turtle.

Procedure Move (Distance: Real);

Moves the active turtle the specified distance
along 1its current direction. The turtle
leaves a tracing of its path (unless the
drawing mode is '"nop"). The distance 1is
specified in the units of the current display
scale (see below). The movement will be
visible unless the current turtle is in a
figure that isn't currently on the display.

Procedure Moveto (X,Y: Real);

Moves the active turtle in a straight-line
from its current position to the specified
location. The turtle leaves a tracing of its
path (unless the drawing mode is "nop"). The
X,Y coordinates are specified in the units of
the current display scale.

Procedure Turn (Rotation: Real);

Turns the active turtle by the amount
specified (in degrees). A positive angle
turns the turtle counterclockwise, and a
negative angle turns it clockwise.

3-30

User Interface

Procedure Turnto (Heading: Real);

Sets the direction (the heading) of the active
turtle to a specified angle. The angle is
given in degrees; zero (0) degrees faces the
right side of the screen, and ninety (90)
degrees faces the top of the screen.

Procedure Pen Color (Shade: Integer);

Selects the color with which the active turtle
traces its movements (unless the pen mode is
"nop"). This color remains the same until
Pen Color is called again.

The color of the pen depends on the way the
video display is set. If your Turtlegraphics
is already configured, the available colors
are described in the documentation for your
hardware. If you must configure
Turtlegraphics yourself, then the assembly
language routines you write will control the
display color; refer to "Installing
Turtlegraphics," below.

A sample set of colors might be:

Black
Blue
Red
Magenta
Green
Cyan
Yellow
White

Honu

NO O~ WNRO
[/t

3-31

User Interface

Turtlegraphics uses a numeric designation for
color instead of a symbolic designation like
the word blue or red to maintain the p-System
language and hardware compatibility. For
example, while Pascal would allow the use of
symbolic color designations, BASIC and FORTRAN
wouldn't.

The term wild card refers to the standard
background color of your display. This
depends on your display hardware and might be
called a "hard" background (you may or may not
be able to change it from a program—this
depends on your hardware configuration). In
Turtlegraphics, each individual figure may
have its own "soft" background color, which we
refer to simply as the "background color" (as
in the discussion below).

You may also use black and white graphics, in
which case the colors might be simply:

0 Black
1 = White

3-32

User Interface

Procedure Pen Mode (Mode: Integer);

Sets the active turtle's drawing mode. This
mode doesn't change until Pen Mode is called
again.

These are the possible modes:

O Nop - doesn't alter the figure.

1 Substitute - writes the current pen color.
2 Overwrite - writes the current pen color.

3 Underwrite - writes the current pen color.
When the pen crosses a pixel that isn't of
the background color, that figure is not
overwritten. T

4 Complement - the pen complements the color
of each pixel that it crosses. (The
complement of a color is its opposite; the
complement of the complement of a color is
the original color.)

Values greater than 4 are treated as Nop.

These descriptions apply to movements of the
turtle. They have a more complex meaning when
a figure 1s copied onto a figure that is
already displayed.

3-33

User Interface

Function Turtle X : Real;

Returns a real value that is the x-coordinate
of the active turtle, in units of the current
Display Scale.

Function Turtle Y : Real;

Returns a real value that is the y-coordinate
of the active turtle, in units of the current
Display Scale.

Function Turtle Angle : Real;

Returns a real value that is the direction (in
degrees) of the active turtle.

Procedure Activate Turtle (Screen: Integer);

Specifies to which figure subsequent
Turtlegraphics commands are directed. Fach
invocation of this procedure puts the
previously active turtle to sleep and awakens
the turtle in the designated figure. When
Turtlegraphics is initialized, the turtle in
the actual display is awake. The initial
position of the turtle is (0,0) or the bottom
left-hand corner of the screen, ready to move
right.

3-34

User Interface

The Display

We refer to the initial background of the
display as the wild card color. The wild card
color (color 0) depends on your hardware (or
it may be possible for you to set it from a
program). The default is typically black.
The background color of a Turtlegraphics
figure may be changed by you with a call to
Background. This "soft" background epplies
when drawing mode is used, as indicated above.

A figure can be filled with a single color
(not necessarily the background color) by
calling Fillscreen.

NOTE: If you wuse Turtlegraphics (or
customized routines of your own) to alter the
settings of your display, it is a good idea to
reset everything before your program
terminates. Usually it isn't possible for the
display to return to its original state, and
the p-System software has no knowledge of what
that original state was. Also, for the system
to operate correctly, you must follow any
video mode change with a call to
Display Scale.

Procedure Fillscreen
(Screen: Integer; Shade: Integer);

Fills the specified figure ("screen") with the
specified color ("shade"). If screen = O,
which indicates the actual display screen,
then only the current viewport is shaded. For
user-created figures, the entire figure is
shaded.

3-35

User Interface

Procedure Background
(Screen: Integer; Shade: Integer);

Specifies the backgound color for a figure.
The initial background color of all figures is
the wild card color.

Labels

It is possible to draw legends, labels, and so
forth on the display while wusing the
Turtlegraphics unit. This is done by calling
either WChar or WString. The character or
string appears at the Jlocation of the

currently active turtle. The text is
displayed in the type font defined by the file
*SYSTEM.FONT. (See "Installing

Turtlegraphics," below, to find out how to
define a font).

Procedure WChar
(C: Char; Copymode, Shade: Integer);

Writes a single character at the position of
the currently active turtle, using the
indicated pen mode and color. The character
is always displayed horizontally, regardless
of the active turtle's direction.

3-36

User Interface

Procedure WString
(S: String; Copymode, Shade: Integer);

Writes a string starting at the position of
the currently active turtle, using the
indicated pen mode and color. The string is
always displayed horizontally, regardless of
the active turtle's direction.

Scaling

When you wish to display data without altering
the input data itself, it is possible to set
scaling factors that translate datas. into
locations on the display. This is done with
Display Scale. The display scale applies
globally to all figures.

Because of the shape of the actual display,
data for particular shapes (especially curved
figures) might become distorted when using a
"straight" display scale. In this case, the
function Aspect Ratio can be used to preserve
the '"squareness" of the figure.

3-37

User Interface

Procedure Display Scale
(Min X,Min Y,Max X,Max Y: Real);

Defines the range of input coordinate
positions that are to be visible on the
display. Turtlegraphics maps your coordinates
into pixel 1locations according to the scale
specified in Display Scale.

This procedure sets the viewport to encompass
the whole display. The display bounds apply
to input data. For the actual display, these
bounds can be any values you require, but for
user-created figures (0,0) is the lower
left-hand corner.

If your Turtlegraphics package is tailored to
your hardware, then the default display scale
is already supplied. If you purchased
Turtlegraphics as a separate, configurable
product, then you must supply the parameters
for your own display. These must be returned
by user-written procedure Query Environment.
(Refer to "Installing Turtlegraphics,” below.)

3-38

User Interface

The following lines are an example of a
default scale. It is simply the array of
pixels on the FULL display.

'm"uﬂ_'x =0, max-x =319
min_y =0, max_.y =199 - .

As an example, if you wish to graph a
financial chart from the years 1970 to 1980
along the x axis, and from 500,000 to
500,000,000 along the y axis, the following
call could be used.

bisplay. scale(1970,"5.0E5, 1980, 5.0E8)

After this, calls to turtle operations could
be done using meaningful numbers rather than
quantities of pizxels.

3-39

User Interface

Function Aspect Ratio : Real;

Returns a real number that is the width/height
ratio of the CRT. This can be used to compute
parameters for Display Scale that provide
square aspect ratios.

If an application 1is designed to show
information where the aspect ratio of the
display is critical (for example, circles,
squares, pie-charts, and so forth), it must
ensure that the following ratio is the same as
the aspect ratio of the physical screen upon
which the image is displayed.

(max_x = min_x) / (max_y = min_y)

When the Turtlegraphics unit is initalized,
Min X and Min Y are set to O. Max X 1is
initialized to the number of pixels in the X
direction, and Max Y is initialized to the
number of pixels in the Y direction. In order
to change to different units that still have
the same aspect ratio, a call similar to the
following example can be used.

Display_scale(0, O, 100*ASPECT_RATIO, 100);

This utilizes Function Aspect Ratio described
above, and makes the y axis 100 units long.

3-40

User Interface

Turtlegraphics always treats the turtle as
being in a fixed pixel location. Changing the
scaling of the system with a call to this
routine in the middle of a program doesn't
alter the pixel position of any of the turtles
in the figures. However, the values returned
from X Pos and Y Pos may change.

Figures and the Port

You can create and delete new figures, each
with its own turtle. When a new figure is
created, it 1is assigned an integer, and this
integer refers to that figure in subsequent
calls to Turtlegraphics procedures. New
figures can be saved (Put Figure) or displayed
on the screen (Get Figure).

The actual display is always referred to as
figure 0.

The active portion of the display can be
restricted by calling viewport, which creates
a '"window" on the screen in which all
subsequent graphics activity takes place. You
might create a figure, specify the port, then
display that figure (or a portion of it)
within the port. Specifying a viewport
doesn't restrict turtle activity, it merely
restricts what is displayed on the screen.

3-41

User Interface

User-created figures can be saved in p-System
disk files.

Function Create Figure
(X Size,Y Size: Real): Integer

Creates a new figure that is rectangular, and
has the dimensions (X Size, Y Size), where
(0,0) designates the lower left-hand corner.
The dimensions are in units of the current
display scale. The figure is identified by
the integer returned by Create Figure.

When a figure is created it contains its own
turtle, which is located at the initialization
position or 0,0 and has a direction of O (it
faces the right-hand side of the figure). The
turtle in a user-created figure can be used by
calling Activate Turtle.

Procedure Delete Figure
(Screen: Integer);

Discards a previously created display figure
area.

3-42

User Interface

Though figures may be created and destroyed,
indiscriminate use of these constructs may
rapidly exhaust the memory available in the
p-System due to heap fragmentation. For
example, a figure may be created using
Create Figure (or it may be read in from disk
using Function Load Figure, described below).

If possible, after that figure is used (for
example, with a Get Figure, Put Figure,
Load flgure or Store Figure operation), it
should be deleted before other figures are
created. If many figures are created and
randomly deleted, the heap fragmentation
problem may occur.

Procedure Get Figure
(Source Screen: Integer;
Corner_X,Corner_Y: Real;
Mode: Integer),

Transfers a user-created figure (the source)
to the display screen (the destination) using
the drawing mode specified. The figure is
placed on the display such that its lower
left-hand corner is at (Corner X, Corner Y)
The X and Y positions are spe01f1ed in the
units of the current display scale. If the
display scale has been modified since the
figure was created, the results of this
procedure are unpredictable.

3-43

User Interface

The following items define the drawing mode

numbers.

O Nop - Doesn't alter the destination.

1 Substitute — Each pizxel in the source
replaces the corresponding pixel in the
destination.

2 Overwrite - Each pixel in the source that
isn't of the source's background color
replaces the corresponding pixel in the
destination.

3 Underwrite - Fach pixel in the source that
isn't of the source's background color is
copied to the corresponding pixel in the
destination, only 1if the corresponding
pixel 1s of the destination's background
color.

4 Complement - For each pixel in the source

that idisn't of the source's background
color, the corresponding pixel in the
destination is complemented.

Values greater than 4 are treated as Nop.

If a portion of the source figure falls
outside the display or the window, it is set
to the source's background color.

3-44

User Interface

Procedure Put_ Figure
(Destination Screen: Integer;
Corner X,Corner Y: Real; Mode: Integer);

Transfers a portion of the display screen to a
user-created figure wusing the drawing mode
specified (see above). The portion
transferred to the figure is the area of the
display that the figure covers when it 1is
placed on the display with its lower left-hand
corner is at (Corner X, Corner Y). If the
display scale has been modified since the
figure was created, the results of this
procedure are unpredictable.

NOTE: When a figure is moved to the display
by Get Figure, further modifications to the
display do not affect the copy of the figure
that is saved in memory. If you wish to save
the results of graphics work on the display,
it is necessary to call Put Figure.

3-45

User Interface

Procedure Viewport
(Min_X,Min Y, Max X,Max Y: Integer);

Defines the boundaries of a "window" that
confines subsequent graphics activities. The
viewport procedure applies only to the actual
display. When a window has been defined,
graphics activities outside of it are neither
displayed nor retained in any way. Therefore,
lines, or portions thereof, that are drawn
outside the window are essentially lost and
won't be displayed (this is true even if the
window is subsequently expanded to encompass a
previously drawn line). The viewport
boundaries are specified in the units of the
current display scale. If the specified size
of the viewport is larger than the current
range of the display, the viewport is
truncated to the display limits.

Pixels

It is possible to ascertain (Read Pixel) or
alter (Set Pixel) the color of an individual
pixel within a given figure. These routines
are more specific than the turtle-moving
routines. They are less straightforward to
use, but give you greater control.

3-46

User Interface

Fanction Read Pixel
(Screen: Integer; X,Y: Real): Integer;

Returns the value of the color of the pixel at
the X,Y location in the specified figure. The
X,Y location is specified in the units of the
current display scale.

Procedure Set_ Pixel
(Screen: Integer; X,Y: Real; Shade: Intege

Sets the pixel at the X,Y 1location of the
specified figure to the specified color. The
X,Y location is specified in the units of the
current Display Scale.

Fotofiles

You may create disk files that contain
Turtlegraphics figures. New figures may be
written to a file, and old figures restored
for viewing or modification.

When figures are written to a file, they are
written sequentially, and assigned an "index"
that is their location in the file. They may
be retrieved '"randomly" by using this index
value.

3-47

User Interface

The p-System name for files of figures always
contains the suffix '.FOTO'. It isn't
necessary to use this suffix when calling
Read Figure File or Write Figure File (if
absent, it will be supplied automatically).

Function Read Figure File
(Title: String): Integer;

Specifies the title of a file from which all
subsequent figures will be loaded. If a
figure file is already open for reading when
this function is called, it is closed before
the new file is opened. Only one figure file
may be open for reading at a single time.
This function returns an integer value which
is the ioresult of opening the file.

Function Write Figure File
(Title: String): Integer;

Creates an output file into which user—created
figures may be stored. If another figure file
is open for writing when this function is
called, it is closed, with lock, before the
new file is created. Only one figure file may
be open for writing at a single time. This
function returns an integer result which is
the ioresult of the file creation.

3-48

User Interface

Function Load Figure
(Index: Integer): Integer;

Loads the indexed figure from the current
input figure file and assigns it a new,
unique, figure number. An automatic
Create Figure is performed. If the operation
fails for any reason, a Figure Number of zero
(0) is returned.

Function Store Figure
(Figure: Integer): Integer;

Sequentially, writes the designated figure to
the output figure file. The function returns
an 1integer that is the figure's positional
index in the current output figure file.
Positional indexes start at one (1). If the
index returned equals zero (0), Turtlegraphics
didn't successfully store the figure.

3-49

User Interface

Routine Parameters

The following shows the interface section for
the Turtlegraphics unit, including the
parameters to all Turtlegraphics routines:

unit Turtlegraphics; -
‘interface _

procedure D1splay Scale(min x, min Y,
) max x, max y. reaL)-'
7 functwn Aspect Raho 3 real- X
y funchon Create F1gure(X _s1: s1ze, y_ size:’

Teal) : integer;
integer J;

procedure \I1ewport(min L X, min_y, max_x, 2
max_y 2 real);

procedure Delete F1gure(screen.

“procedure F1LLscreen(screen:
. 22 A inte’ger, shade:

integer);

procedure Background(screen- nteger,,

i shade : integer); °
5 funct!on Read P1xel(screen- 1nteger' = :
3 x,y : real) :integer;
_procedure Set P1xe|.(screen: 1nteger, .
3 XY real; shade-mteger e
b procedure Get F'ugure(source_ screen-
Lt 'mtger,
corner_x, corner__y. real
copymode : integer);
procedure Put F1gure(destmat'lon screen: g
mteger;

corner Xz corner_y: real; -
: - e mode integer);
function Read Figure. | FileC title : str1ng)
= integer; 2
_funct'lon Hr1te *_Figure_| F1Le(title : string):

& . “integer;
¥ funchon Load F1gure(mdex 5 mteger :

integer;
functwn Store F1gure(figure' 'mteger ¥

. Jnteger;
procedure Actwate Turtle(screens

; integer);
funct1on Turtle X -3 real;"

function- Turtle) B reaL' TR @ e
‘function Turtle | AngLe = reaL, b 28
procedure Move (d1stance s real)
procedure Moveto(x,y : real); -
procedure Turn(ro_tation_' real);-
“procedure Turnto(direction : real);
‘procedure. Pen Mode(state : 'nteger DI
.procedure Pen_| _Color(shade : integer)"
= procedure WChar(¢: char; copymode, shade: mteger Y5
- procedure HStr'mg(s: string; copymode, shade: integer);

3-50

User Interface

Sample Program

Here is a sample program that illustrates a
number of Turegraphics routines:

program Spiraldemo;
uses Turtlegraphics;

const nop = 0;
substitute = 1;

‘'var I, J, Mode: integer;
C: char;
Color: integer;

Seed: integer;
LX, LY, UX, UY: real;

function Randomb(Range: integer): integer;
begin
Seed:= Seed * 233 + 113;
Random:= Seed mod Range;
Seed:= Seed mod 256;
end;

procedure ClearBottom; g
{clears bottom Line of screen
for prompts} :
_begin
Penmode (nop);
Moveto (0, 0);

WString (' ', substitute, 1);
end;
beg1n : :
ClearBottom; {various init1alizations}

WString ('ENTER RANDOM NUMBER: ', substitute, 1);

read(keyboard, Seed); X 5

ClearBottom; -

Display_Scale (0, 0, 200*Aspect_Ratio, 200);
{Aspect_Ratio used so !
pattern will be round}

“Color:=0;° . ; ; A ;
WString ("ENTER VIEHPORT LL CORNER: ', substitute, 1);
read(keyboard, LX,LY); - =
‘ClearBottom; g 3 2
¥String ('ENTER VIEHPORT UR CORNER; ', substitute, 1);
-read(keyboard, UX,UV)- 3 5
ClearBottom; - ¥ 2
WString ('PENMODE= ', substvtute, d):
read(kezboard, IODE)- -

" palette W); - Bt s / :
{0= black, 1=green, 2=red, 3=yellow} :

3-51

User Interface

ViewPort (LX, LY, UX, UY); = {create port}
PenMode (0);
{use blank pen while moving it}
Moveto (100*Aspect_Ratio, 100);
{put turtle in center of port)}
{Aspect_Ratio ensures that it will be
correctly centered) .
PenNode (Mode); -
{set pen to selected color}
Jd:= Random(90)+90;
{angle by which turtle will move
note that turtle begins facing right
and will move counterclockwise
(J is positive))

for I:= 2 to 200 do
{draw spIral in 200 seg-ents
of increasing length}
begin
{cycle through the colors}
Color:= Color+1;
if Color > 3 then Color:= 1;
PenColor (Color);
Move(I);
Turn(J) ;
end;

I:= Create Figure (UX-LX, UY-LY);
{create figure the size of the port}
PutFigure (I, LX, LY, 1);
{save it; mode overwrites
old figure (if any)}
ViewPort (0, 0, Aspect Rat1o*200, 200)-
{respec1fy viewport in
the lower left-hand corner}
GetFigure (1, 0,70, 1;
{display f1nwshed spiral}.
readln;
{clear user input buffer)

- end.

3-52

User Interface

Using Turtlegraphics from FORTRAN

Using the Turtlegraphics routines from FORTRAN
requires accessing special interface units at
compile time. This 1is because the Pascal
syntax contained in the standard
Turtlegraphics wunit isn't compatible with
FORTRAN. In order to use Turtlegraphics from
FORTRAN, the FORTRAN source program must
contain a directive similar to this:

$USES TURTLEGRAPHICS IN FTN.TURTLE.CODE

The Turtlegraphics unit in FTN.TURTLE.CODE
contains the special interface section that is
FORTRAN compatible. It is accessed at compile
time only. During program execution, the
Turtlegraphics wunit in SYSTEM.LIBRARY is
accessed automatically.

In addition, there are two functions,
Readfigurefile and Writefigurefile, and one
procedure, Wstring, that can't be directly
referenced from FORTRAN. Instead, a separate
unit called FTURTLEGRAPHICS exists to provide
the support necessary to pass FORTRAN
arguments to these three routines. In order
to call Readfigurefile, Writefigurefile or
Wstring, a directive similar to this:

$USES FTURTLEGRAPHICS IN RTLIB4.CODE

3-53

User Interface

must appear in the FORTRAN program.
RTLIB4.CODE refers to the name of the FORTRAN
run-time library.

In order to call the Turtlegraphics routines
from FORTRAN, the following general guidelines
should be obeyed:

@ FORTRAN allows identifiers to be a maximum
of six characters only. PASCAL routines
with longer names need to be truncated when
they are called from FORTRAN.

@ PASCAL boolean variables are referred to as
logical in FORTRAN,

@® FORTRAN refers to procedures as
subroutines. The word CALL must precede
the subroutine name in FORTRAN to indicate
a subroutine or procedure call.

3-54

User Interface

The remainder of this section describes the
parameters of the routines wusing the
appropriate FORTRAN syntax.

SUBROUTINE MOVE (DISTANCE)
REAL DISTANCE

SUBROUTINE MOVETO C X, Y
REAL X, Y

SUBROUTINE TURN (ROTATI)
REAL ROTATI

SUBROUTINE ' TURNTO C HEADIN)
REAL HEADIN 3

SUBROUTINE PENCOL. (SHADE)
- INTEGER SHADE

SUBROUTINE PENMOD (MODE)
INTEGER MODE

. REAL FUNCTION TURTLX €) -
REAL FUNCTION- TURTLY. ¢)
REAL FUNCTION TURTLA €)

SUBROUTINE ACTIVA (SCREEN)E
INTEGER SCREEN g

SUBROUTINE FILLSC (SCREEN, -SHADE)
INTEGER SCREEN, SHADE

SUBROUTINE BACKGR ¢ SCREEN, SHADE)
INTEGER SCREEN, SHADE

_ SUBROUTINE DISPLA (" MINX, MINY, MAXX, MAXY)
REAL MINX, MINY, MAXX, MAXY -

REAL FUNCTION ASPECT ()

INTEGER FUNCTION CREATE (XSIZE, YSIZE)
REAL XSIZE, YSIZE

SUBROUTINE DELETE ¢ SCREEN)
INTEGER SCREEN

7SUBROUTINE GETFIG (' SOURCE, XCOR, YCOR, MODE)
INTEGER SOURCE, MODE -
REAL XCOR, YCOR

SUBROUTINE PUTFIG (DESTIN, XCOR, YCOR, MODE)
INTEGER DESTIN, MODE -
REAL XCOR, YCOR

INTEGER FUNCTION READPI (SCREEN, X, Y)
INTEGER SCREEN
REAL X, Y

3-55

User Interface

SUBROUTINE SETPIX (. SCREEN, X, Y, SHADE)
INTEGER SCREEN, SHADE .
REAL X, Y

INTEGER FUNCTION LOADFI (INDEX)
INTEGER INDEX

INTEGER FUNCTION STOREF (FIGURE)
INTEGER FIGURE

SUBROUTINE WCHAR (C, COPYMODE, SHADE)
CHARACTER*1 C E
INTEGER COPYMODE, SHADE

The following three routines are contained in
the FORTRAN interface unit, FTURTLEGRAPHICS,
in the FORTRAN run-time library. Because a
character string can't be passed directly to
the functions Readfigurefile and
Writefigurefile and the procedure Wstring, the
FORTRAN routines FREADF, FWRITE and FWSTRING
must be called instead.

For the functions FREADF and FWRITE, TITLE
refers to the name of the Fotofile which is to
be read or written and LEN contains the length
of the TITLE variable.

" INTEGER FUNCTION FREADF (TITLE, LEN)
CHARACTER*N TITLE
INTEGER LEN

INTEGER FUNCTION FWRITE (TITLE, LEN)

CHARACTERAN TITLE
INTEGER LEN

3-56

User Interface

The following FORTRAN statements are necessary
to call them:

CHARACTER * 5 TITLE
INTEGER LEN, IRESLT

LEN = 5
TITLE = 'FOTO1
IRESLT = FWRITE (TITLE, LEN)

or

‘IRESLT = FREADF (TITLE, LEN)

For FWSTRING, C is actually a string of length
LEN which is to be written in mode COPYMODE
with shade SHADE.

SUBROUTINE FWSTRING (C, LEN, COPYMODE, SHADE)
CHARACTER * <length of string> C
INTEGER LEN, COPYMODE, SHADE

To call FWSTRING, the following FORTRAN
statements are necessary:

- LEN = <length of string>
¢ = <string> y
CALL FWSTRING ¢ C, LEN, COPYMODE, SHADE)

3-57

User Interface

Using Turtlegraphics From BASIC

Using the Turtlegraphics routines from BASIC
requires accessing a special interface unit at
compile time. This is because the Pascal
syntax contained in the standard
Turtlegraphics unit isn't compatible with
BASIC. In order to use Turtlegraphics from
BASIC, the BASIC source program must contain
directives similar to these:

= 'LIBRARY-'"BSC.TURTLE.CODE" -
. USES TURTLEGRAPHICS

The Turtlegraphics unit in BSC.TURTLE.CODE
contains the special interface section that is
BASIC compatible. It is accessed at compile
time only. During program execution, the
standard Turtlegraphics unit in SYSTEM.LIBRARY
is accessed automatically.

In addition, the procedure Wchar contains a
parameter of type CHAR which was changed to
type INTEGER for BASIC, when calling this
procedure the DIM var*1l variable in BASIC must
be changed tc an INTEGER.

3-58

User Interface

In order to call the Turtlegraphics routines
from BASIC, the following general guidelines
should be obeyed:

@ BASIC doesn't allow imbedded reserved words
in identifiers, no identifiers should have
this characteristic.

@ BASIC refers to procedures as subroutines.
The word CALL must precede the subroutine
name in BASIC to indicate a subroutine or
procedure call.

3-59

User Interface

The remainder of this section describes the
parameters of the routines using the
appropriate BASIC syntax.

SUB DSPSCALE ¢ MINX, MINY, MAXX, MAXY).
REAL MINX, MINY, MAXX, MAXY ;

DEF REAL ASPECTRATIO

DEF -INTEGER CREADFIGURE ¢ XSIZE, YSIZE)
REAL XSIZE, YSIZE

SUB DELETEFIGURE. (SCREEN)
INTEGER SCREEN

SUB VIEWPORT (MINX, MINY, MAXX, MAXY)
REAL MINX, MINY, MAXX, MAXY. .

SUB ‘FILLSCREEN (SCREEN, SHADE)
INTEGER SCREEN, SHADE

SUB BACKGROUND (SCREEN, SHADE)
INTEGER SCREEN, SHADE

DEF INTEGER RDPIXEL (SCREEN, X, Y-)

INTEGER SCREEN

REAL X, Y

SUB SETPIXEL (SCREEN, X, Y, ‘SHADE)

‘INTEGER SCREEN, SHADE

REAL X, Y-

SUB GETFIGURE' (-SOURCESCREEN, CORNERX, CORNERY, COPYMODE)
INTEGER SOURCESCREEN, COPYMODE

REAL CORNERX, CORNERY - - :

SUB PUTFIGURE (DESTINATIONSCREEN, CORNERX, CORNERY, COPYMODE)
INTEGER DESTINATIONSCREEN, COPYMODE

REAL CORNERX, CORNERY

DEF'INTEGéR RDFIGURE ¢ TITLE)
DIM TITLE$*8

DEF INTEGER WRTEIGURE - (TITLE)
DIM TITLES*8

DEF INTEGER LDFIGURE (INDEX)‘
- INTEGER INDEX

DEF INTEGER STORFIGURE (éCREEN i
INTEGER SCREEN

SUB ACTIVATETURTLE (SCREEN)
INTEGER SCREEN

DEF REAL TURTLX
‘DEF REAL TURTLY

DEF REAL TURTLANGLE

3-60

User Interface

SUB MOVE (DISTANCE)
REAL DISTANCE

SUB MOVETO (X, Y)
REAL X, Y

SUB TURN (ROTATION)
REAL ROTATION

SUB TURNTO (DIRECTION)
REAL DIRECTION

SUB PENMODE (STATE)
~ INTEGER STATE

SUB PENCOLOR (SHADE)
INTEGER SHADE

SUB WCHR- (C, COPYMODE, SHADE)
INTEGER C, COPYMODE, SHADE

NOTE: To call procedure, WCHR the following
instructions must be used:

INTEGER C
DIM S$x1

C = ASC(S) (* S contians the character to print*)
CALL WCHR (C, COPYMODE, SHADE) i

SUB WSTR (S, COPYMODE, SHADE)

‘DIM S$
INTEGER COPYMODE, SHADE

3-61

User Interface

Installing Turtlegraphics

Turtlegraphics has been designed to facilitate
the development of portable graphics
applications. Turtlegraphics is distributed
in two forms. Some systems are distributed
with Turtlegraphics already configured into
the *SYSTEM.LIBRARY and ready to run.
Turtlegraphics is also sold in an adaptable
form. This document describes how to install
adaptable Turtlegraphics on your system.

The adaptable Turtlegraphics package is
contained in the following seven files:

GRAFIX2.CODE { A linkable Turtlegraphics Unit for
3 o - systems using 2-word. real -numbers ¥

GRAFIX4.CODE € A linkable Turtlegraphics Unit for
; systems using 4-word real numbers)
USRGRAFS.TEXT "€ A skeleton graphics initialization

unit } 2

A dummy graphics initialization unit
for systems with no special setup
requirements } 7

USRGRAFS.CODE

-~

- SYSTEM.FONT { A data file containing the default
e character font }
EXERCISE2.CODE - { A test suite designed to exercise

your: graphics I/0 implementation

: on systems using 2-word real numbers)}
EXERCISE4.CODE { A test suite designed to exercise

: ik your graphics I/0 implementation

on systems using 4-word real numbers)
Source program for low level routine

EXERCISE.TEXT
= test program }

-

3-62

User Interface

To install Turtlegraphics on your p-System, it
is necessary to write a collection of
low-level graphics routines in assembly
language and link them into one of the GRAFIX

files. These routines perform simple
functions such as set a point to a specific
color, or drawing a line segment.

Turtlegraphics builds upon these simple
routines to provide higher level services to
UCSD Pascal, BASIC, and FORTRAN. If you
aren't already familiar with Turtlegraphics,
you should stop and read its description in
Chapter 1 of this manual for your particular
hardware. The following section, entitled
"Graphics I/O Routines," explains these
low-level routines and the structures they
manage. It also provides some implementation
hints to help you get the best performance
from your system.

Some systems require special initialization
prior to performing graphics 1I/0. For
example, it is often necessary to disable a
hardware character generator on memory-mapped
displays before you can write to individual
screen picture elements (pixels). Similarly,
at the end of graphics I/O it 1is sometimes
necessary to perform special operations to
restore the system display to normal
operation.

3-63

User Interface

Such initialization and termination is handled
by the initialization and termination code of
the USERGRAPHICS unit. If your system
requires some sort of graphics initialization
or finalization, you will have to develop a
custom USERGRAPHICS unit. The "Graphics
System Initialization" section, presented
later in this chapter, describes how to tailor
the supplied unit to suit your requirements.
If your system requires no special
configuration to perform graphics I/0, skip
the "Graphics System Initialization" section,
use the dummy unit supplied.

The file *SYSTEM.FONT contains a dot matrix
character representation that is used by the
Turtlegraphics routines WChar and WString. A
subsequent section, "Character Fonts,"
describes the structure of *SYSTEM.FONT and
how to build a custom version. It is strongly
recommended that you don't replace the default
file until the rest of Turtlegraphics is

working. The EXERCISE program and
Turtlegraphics error handlers expect a valid
font to be available. "Linking and
Librarying," below, describes the ways

Turtlegraphics may be 1libraried into a
p-System. It also describes the use of the
EXERCISE program in debugging a Turtlegraphics
adaptation.

3-64

User Interface

Graphics I/0 Routines

The Turtlegraphics unit is created by
linking seven assembly code I/0O routines
into either GRAFIX2.CODE or GRAFIX4.CODE.
These routines interact not only with the
system display, but also with a collection
of data structures that describe the state
of Turtlegraphics.

None of the routines described 1in this
section need to perform range-checking on
the parameters passed, EXCEPT for Draw_Line.
When any of these routines (except
Draw Line) are to be called, Turtlegraphics
performs the appropriate range-checking
beforehand.

The following subsections describe the
syntax and semantics of these routines.

3-65

User Interface

Procedure Query Environment
(Var DisplayDesc: DisplayRec);

Turtlegraphics uses this procedure to
initialize the parameters that describe the
target configuration. Query Environment is
passed a pointer to a record that describes
the machine-dependent aspects of the system.
A1, the fields must be filled by this
routine. The Pascal description of the
record below comes from Turtlegraphics.

-DisplayRec =
record i
" XPixelCnt: integer; {number of pixels in the x direct1on
~on the actual display)
YPixelCnt: integer; {number of pixels in the y direction
on the actual display)}
MaxColor: integer; {maximum valid color number}
AspectX: integer; A :
AspectY: integer; {a pair of integers such that
’ the ratio: AspectX/AspectY, is the
aspect ratio of the actual physical
s - display)
CharHeight: integer;
CharWidth: integer; {specifies the height and width of
characters generated by SYSTEM.FONT
-in pixels. For the SYSTEM.FONT
shipped, the default is 8x8)
TargetStamp: integer; {identifies the current target
machine configuration. Used as a
validity check by LOADFIGURE,

, GETFIGURE, and PUTFIGURE)
end; - :

3-66

User Interface

Function Figure Size
(Screen: ScreenPtr): Integer;

This function tells Turtlegraphics the
number of words required to store the figure
described by the indicated ScreenRec on the
target machine. This function is called by
Create_ Figure when an application
dynamically creates a figure. The size of
the figure varies. Typically it is a
function of the figure area times the number
of colors available.

The encoding of user-created figures is
completely managed by the low-level routines
you are writing. You may elect to encode
your figures for maximum data compression if
your applications store many figures. You
may encode for maximum update efficiency, if
you have a great deal of available storage.

On systems with large physical memory
capacity, you may elect to store the first
several user figures outside of the
Stack /Heap address space. In that
situation, the figure size can be zero.

3-67

User Interface

The type ScreenPtr is a pointer to a Pascal
record that describes the state of a
Turtlegraphics figure. There is one screen
description record for every Turtlegraphics
figure, including the actual display.

ScreenPtr = ScreenRec;

ScreenRec =
record

Yalid: ScreenPtr; {pointer should always be a self
reference when figure is valid}

FigPtr: fig; {pointer to the figure's locn in memory;
a nil pointer indicates that the record
describes the actual -display}

Color: integer; {current pen color}

Backgnd: integer; {current turtle background colorl}

Mode: integer; {current turtle drawing mode)

{the next,%our values delimit the viewport by pixel values:}

MinXPix: integer;

MinYPix: integer;

MaxXPix: integer;

MaxYPix: integer;

XPix: integer; {turtle pixel x position)}
YPix: integer; {turtle pixel y position)}

TargetStamp :integer; {target machine stamp which identifie
the machine configuration upon which the figure
was created; it is updated only by low-level

routines)
Size: integer; {size of the figure in words)}
XPos: real; {turtle x posn in display scale units}
YPos: real; {turtle y posn in display scale units)

Heading: real; {current orientation of the turtle)}
ScaleStamp: integer; {Specifies the scale generation value
for which XPos and YPos are valid}

end;

3-68

User Interface

Function Read Screen_ Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer): Integer;

The Read Screen Pixel function returns the
color of the pixel at the specified location
in figure. The XPixel and YPixel parameters

give the pixel location. Turtlegraphics
checks the range on all calls to this
routine. If the FigPtr in the indicated

screen record is nil, then the function
should return the state of the actual
display.

Procedure Set_ Screen_ Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer;
Shade: Integer);

The Set Screen Pixel procedure sets the
pixel at (XPixel, YPixel) to the designated
color. Shade specifies the color value. If
the FigPtr in the indicated screen record is
nil, then the procedure should modify the
actual display.

3-69

User Interface

Procedure Comp Screen_ Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer);

The Comp Screen Pixel procedure complements
the pixel at (XPixel, YPixel). Shade
specifies the color value. If the FigPtr in
the indicated screen record is nil, then the
procedure should modify the actual display.

The definition of complement is left to the
discretion of the implementor for a given
target machine, given the following
constraints—complementing a pixel must
result in a different unique color, the
complement of which is the original color.
This implies that a machine which supports
Turtlegraphics must have an even number of
colors in its palette, or that only an even
number can be used.

Procedure Fill Color
(Screen: ScreenPtr; Shade: Integer);

This procedure fills a portion of the
specified screen with the designated color
value. The contents of the screen record
fields MaxXPix, MinXPix, MaxYPix, and
MinYPix describe the rectangular area that
is filled. The FigPtr contains a pointer to
the area of memory in which the figure is

stored. If FigPtr is nil, the actual
display (or a portion of 1it) should be
filled.

3-70

User Interface

Procedure Draw Line
(Pointer: ScreenPtr;
StartX, StartY, EndX, EndY: Integer);

Draw Line is the most complex routine to be
written for Turtlegraphics. It must draw a
line segment in the specified screen. The
starting and ending points of the line
segment are described by (StartX, StartY),
(EndX, EndY).

IMPORTANT : Turtlegraphics does no range
checking on the 1line segment. The
implementor is responsible for computing all
the points in the line segment, and ONLY
plotting those within the viewport. (The
viewport is defined by the screen record
fields MaxXPixel, MaxYPixel, MinXPixel and
MinYPixel.) In addition, the points on the
line must be plotted using the PenColor and
Mode specified in the screen record. The
valid mode values and their meanings are
described below:

const
nop
substitute
overwrite
underwrite
complement

Il
WO

If the current mode is Nop, Draw Line is NOT
called.

3-71

User Interface

Substitute mode calls for every visible
point on the line segment to be
unconditionally plotted.

Overwrite, for the purposes of Draw Line, is
the same as Substitute.

Underwrite mode indicates that visible
points on the line segment are plotted only
if the pixel at that location is currently
set to the Backgnd color, as described in
the screen record.

Complement mode indicates that the visible
points on the 1line segment should be
complemented wusing the definition of
complement used by the Comp Screen Pixel
procedure.

The performance of Turtlegraphics is
strongly influenced by the efficiency of
these routines. It is recommended that
every effort be made to optimize their
operation. Computing the line trajectory
and then only performing simple addition to
determine the locus of the next point is a
good way to minimize computing. A
"psuedo-Pascal" procedure below outlines how
Draw Line might be structured:

3-72

User Interface

User Interface

begin
if DYNeg then exchange xy;
{substitute for fractions:}
YInc := abs((64 * DeltaY) div DeltaX);
{using binary fixed point arithmetic operations:}
YCorrection := YInc mod 64 + 1;
YInc :=-YInc div 64;
Y := Starty;
X := StartX;
YResidue := 0;
cnt := 0;
‘while Y <= EndY;
do begin
update pix (X, Y);
Y=Yz
Cnt := Cnt+1;
if Cnt=YInc then 4
if YResidue > 64 then
begin
Cnt := Cnt -1;
YResidue := YResidue - 64

end
else
begin
YResidue := YResidue + VCOrrection,
Cnt :=0;

if DXNeg then X := X-1
else X = X + 1'

end;
end;
end
else (abs(sLope)<- 45 degrees)
begin

if DXNeg then exchange Xy;

{substitute for fractions:¥ 2
XInc:=abs((é4 * DeltaX) div DeltaY)-

{using binary. f\xed point arithmetic operations:}
~XCorrection := XInc mod 64 +57s

XInc := XInc div 64;

X = StartX-

Y := StartY;

XResidue := 0;

Cnt := 0;
while X <= EndX
g do begin
update_pix (x, y);- A
X = X#1; - e .
.Cnt := Cnt+1; %
if Cnt=XInc then- A '
if XResidue > 64 then

begin
Cnt := Cnt -1;
XRes1due = XRes1due - 64

end

else

begin
XResidue := Xnesidue + XCorrection;
Cnt := 0;
if DYNeg then Y := Y-1.

| else Y := Y +1;
end;
end; p
end;

end;

3-74

User Interface

Graphics System Initialization

It is frequently necessary to perform some
special operations to ready a system to
display graphic information. On some
systems, for example, the display hardware
must be switched into a different mode.
Similarly, at the termination of graphic
I/0, it is often necessary to perform some
operations to restore the system to normal
operation.

Turtlegraphics addresses this situation by
expecting a unit called USERGRAPHICS to be
in *SYSTEM.LIBRARY. This unit has one
procedure:

procedure Hardware config;

When Turtlegraphics is performing
initialization it calls Hardware Config. At
the end of a program, any termination code
present in the USERGRAPHICS unit is
executed.

3-75

User Interface

Turtlegraphics is shipped with a skeleton
version of USERGRAPHICS in the file
USRGRAFS. This may be used if no special
initialization or termination is required.
If your system requires special
configuration, you can write your own
USERGRAPHICS unit. The only requirement is
that USERGRAPHICS be in *SYSTEM.LIBRARY, and
that the FIRST procedure in its interface
section must be called Hardware Config.

3-76

User Interface

Character Fonts

Turtlegraphics allows programs to label
figures by calling two special routines,
WChar and WString. These routines draw
characters in figures by using a table
stored in a file called *SYSTEM.FONT.

The standard system 1is shipped with a
character font that contains 128 ASCII
codes, similar in style to those on the some
personal computers. FEach character occupies
an area 8 pixels high by & pixels wide.
This character size may be inappropriate to
some displays. On high resolution displays,
such characters are too small. On low
resolution displays, it may be desirable to
use a 5x7 character matrix.

To replace the default font with one of your
own design, you must first be sure that your
version of the function Query Environment
initializes the display record fields
CharHeight and CharWidth to the proper
values. You must then generate a new table
and save it on the boot disk as
*SYSTEM, FONT .

3-77

User Interface

A Font Structure

Turtlegraphics reads the font table as a
l1-dimensional packed Boolean array. To draw
a character, it computes the index of the
first bit of a character as follows:

© . index:= ord'(vcha:racter'v) * C‘harHe'i:ght % CharWidth;

It then displays the characters, using an
algorithm similar to:

for x: -0 to Char\hdth = 1 23
g!_o for y:=0-to CharHeight. - 1)
do if font[index + x*charHe1ght % ¥l then -
set__pIxel(screen, x+turtle X, y+turtle y, P
else -
set pvxel(screen, x*turtle x, y+turtl.e Y, 0;

Therefore, the font table is designed 1like
a:

s ‘packed arrifED.,127_,0.;fcharui‘dt_*ﬁ-ﬂ, 0..CharHeightl ofBoolean

Don't use such a declaration to create your
character font in Pascal. Pascal aligns all
arrays (packed arrays included) so that all
rows and columns begin on word boundaries.
This will cause you problems if the product
of CharHeight and CharWidth isn't evenly
divisible by 16.

3-78

User Interface

Linking and Librarying

Once you have written the low-level graphics
I/0 routines, you must link them into one of
the GRAFIXx.CODE files to produce a complete
Turtlegraphics unit. The standard p-System
linker will do the job. Select either
GRAFIX2.CODE or GRAFIX4,CODE to host your
linking, depending on the real number size
of your p-machine. The output file should
be called TURTLE.CODE.

NOTE: There are
least-significant-byte-first and
most-significant-byte-first versions of
these GRAFIXx files. You should have
received the Turtlegraphics package which
corresponds to the byte sex of your
processor. It isn't possible to 1link
assembled routines into a host of the
opposite byte sex.

To run programs that use "Turtlegraphics,"
be sure *SYSTEM.FONT is on the boot disk.
Also, be sure that *USERLIB.TEXT indicates
where TURTLEGRAPHICS and USERGRAPHICS may be
found, or include Dboth units in
*SYSTEM.LIBRARY.

3-79

User Interface

Exercising Turtlegraphics

Included in the adaptable Turtlegraphics
package are two exercise programs,
EXERCISE2.CODE and EXFRCISE4.CODE. Both are
created from the source in EXERCISE.TEXT.
They are provided to help you debug your
low-level graphics I/O routines. They are
programs written in Pascal, and are designed
to exercise progressively more sophisticated
aspects of your routines.

The exercise 1is divided into two main
sections. The first section tests graphics
I/0 to the actual display. The second half
runs a similar set of test on user-created
figures, and then copies the figures to the
actual display for your examination. The
paragraphs that follow explain the operation
of the exercises.

Display Set and Clear Pixel Test

This test should display a set of colored,
dotted 1lines horizontally across the
display, drawing a pair from left-to-right
with each pass. The test should end when it
has cycled through all the colors available
on your display. It will then query you to
see that it has determined the number of
available colors correctly. For this and
all subsequent queries, affirm a correct
result by pressing 'Y' (either upper- or
lowercase). Any other character is
considered a negative response, and the
exercises will terminate.

3-80

User Interface

Display Fill Color Tests

The next set of exercises tests Fill Color.
First the system calls Fillscreen in all the
valid colors for your system. You should be
careful to be sure that Set Screen Pixel
uses the same color values as Fill Color.

The next phase of this test should set the
screen to color O and then display a set of
overlapping rectangles from the lower
left-hand corner of the display to the upper
right, using all the available colors. This
is a test of windowing in Fill Color.

3-81

eeeeeeeeeeeee

-

User Interface

Display Line-Drawing Exercises

The next portion of the exercises 1is
designed to check the Draw lLine routine.
First a set of radial lines are drawn from
the center of the screen. Thirty-six
radials are drawn starting at the 3 o'clock
position, and then move counterclockwise
around the center point. This behavior is
repeated for all the nonzero colors. Again,
be sure that the color assignment matches
both Fill Color and Set Screen Pixel. A
sample copy of the sort of display created
by this test appears in the figure below:

3-83

User Interface

The next part of the tests checks to see if
Draw line respects the viewport of the
display. The system 1issues the same
commands as it did on the previous tests,
but this time the viewport is restricted to
a small rectangle in the center of the
display. The result should be that the
lines should stop at the periphery of the
rectangle, rather than continuing to their
previous end points. The figure helow shows
how the display should appear when the test
is complete:

3-84

User Interface

The last line-drawing test on the actual
display is performed only on systems with
more than two colors. This checks the
update modes for 1line drawing. A small
rectangular area 1in the middle of the
display 1is shaded. Then the same set of
radials as before are drawn in each of the
modes. The expected effects for each mode
are summarized here:

0 In Nop mode nothing else should appear.

1 Substitute mode should draw lines over
the top of the rectangle and beyond.

2 Overwrite mode should draw lines over the
top of the rectangle and beyond.

3 Underwrite mode shouldn't alter the
center rectangle. Radials should be
visible from the periphery of the
rectangle, continuing out to their
previous end point.

4 In Complement mode, the radials should
emerge from the center point, but change
color at the periphery of the center
rectangle and terminate at the edge of
the screen.

3-85

User Interface

User—Created Figures Exercises

After testing the display, the Exercise
program performs all the same operations on
user—created figures. The results of each
test are indicated on the actual display. A
frame is constructed on the actual display
using Fill Color. Your figures resulting
from each test are copied into this viewing
frame.

All the same figures should result, except

for those that tested viewports, a
user-created figure can't contain a
viewport.

We remind you that a test can prove the
presence of bugs, but never their absence.
EXERCISE won't prove that your routines are
error-free, but if all the tests execute
successfully, your low-level routines work
well enough that you can now start using
Turtlegraphics.

3-86

User Interface

QUICKSTART Units

The code files PEDGEN.CODE and CHKSUMOPS.CODE
are related to the QUICKSTART utility
(described in the Operating System Reference
Manual). These are two standard p-System
units which may be used by p-System programs
in order to perform tasks related to the
quickstarting of programs.

PEDGEN contains a single routine called
PED GENERATE. PED GENERATE creates a new code
file which contains a description of the
execution environment required by the program.
This execution environment description is in
the form of a "Program Environment Descriptor"
referred to as a "PED." The Pascal interface
to this unit is described below.

CHKSUMOPS contains routines to generate and
validate checksums for p-System code files.
The Pascal interface to this unit is described
after PEDGEN,

3-87

User Interface

PEDGEN Unit Interface

Here is the Pascal interface to the PEDGEN
unit:

3-88

User Interface

pgr_duplicate_unit_prror,
{A unit name conflicts with
a system unit name, or the
system contains more than
one unit with the same name.}

par_| L1b count_error,
{Number of Library files referenced
by execution environment exceeds
max_Library file refs.}

pgr_sys_ref count_error,
{Number of system segments referenced
by execution environment exceeds
max_system seg refs.}

pgr_no_program_error,
{Input file is not a host
program, or the operating system
host unit is missing from an
. operating system host code file.)}

pgr_no_boot_seg_c error,
{System host code file does not
contain the required boot segment.}

pgr_must_be Linked error,

{Program environment references
a segment which contains
unresolved references to
assembly language routines.
Thus the program must be
linked by the Linker before an
environment can be constructed.}

pgr_obsolete_segment error,
{Program contains a reference to
a segment which was not compiled
with a Version IV compiler.)

pgr_not_enough mem_error,

{Not enough memory to build
required temporary data
structures during environment
construction process.}

pgr_buf overflow error
{The buffer into which the PED
is being generated in not large
enough to describe the environment
for the program.}

);

{The following is the interface to the PED_GENERATE routine itself.}

function
ped generate
(1nput file_id: pedgen file name;
L " {File name of program-code" f1le for
which.a new PED is to be constructed.}

output_file id: pedgen file name;
{File name of new code file to be
created.}

3-89

User Interface

is system' boolean; :
3 {If TRUE the PED for a new operat\ng
" system is to be constructed which does
not contain references to segments of
the current operating system.)}

copy_input: boolean;

i {If TRUE. the PED is inserted in a new copy
of the source code file; otherwise the new
PED is written to the original code fite.}

. copy__ libraries: boolean;

{Controls whether user is prompted for
where to copy updated versions of Library
code files into which new checksums have
been inserted.}

yrite_progkeSS_pessages: boolean;

{If TRUE progress messages are written
to the standard file OUTPUT describing
how the execution environment is being
constructed.} g

var the_iorslt: integer;
{When an I/0 result. is returned this
parameter is set to the value of IORESULT. .
If no 1/0: errors occur, th1s is set to zero a g

var.the name: pedgen file name
- " {When a unit or a Library code file is
not found, or an I/0 error occurs$ this
variable is set to the name of the unit
or file. When none of these errors

occur, this variabke:isbset to the
empty string.}

): pedgen result;

The INPUT FILE ID parameter specifies the file
name of the code file for which a Program
Environment Descriptor (PED) should be
constructed. The OUTPUT FILE ID parameter
specifies the file name for the new code file
to be created. OUTPUT FILE ID is only used
when the COPY INPUT parameter has the value
TRUE.

3-90

User Interface

The IS SYSTEM parameter is used to determine
if the program is a new version of the
p—System operating system. If IS SYSTEM is
TRUE, PED GENERATE generates a PED that
doesn't contain any information specific to
the currently executing operating system. If
IS SYSTEM is FALSE, the generated PED assumes
the current operating system environment.

The COPY INPUT parameter specifies whether the
PED is to be installed in the existing code
file, or installed into a copy of the original
program code file. If COPY INPUT is TRUE, a
copy of the original program code file is
written to the file specified by the
OUTPUT FILE ID parameter; otherwise, the
source code file is modified to contain a new
PED.

This copying process begins by copying the
segment dictionary blocks of the original code
file to the designated output file. The
segments contained in the original code file
are copied one at a time to the output file.
When all of the code segments within the
original code file have been copied, a revised
segment dictionary is created in a sequence of
consequtive blocks at the beginning of the new
code file. The manner in which the contents
of the original code file are transferred to
the output code file ensures that a PED
present in the original code file doesn't
occupy space in the new program code file.
Once this copying process is completed, the
building of a new PED for the program is
started. This final process consists of
building the execution environment for the
program and storing a representation of that

3-91

User Interface

environment in the form of a PED in the new
code file. The PED is stored in the new code
file by appending it to the end of the code
file.

If COPY INPUT is FALSE, the new PED is either
written on top of an existing PED within the
original code file, or is appended to the end
of the original code file.

During the construction of the program
execution environment, each referenced library
code file 1is checked for the presence of a
nonzero checksum indicator in block zero of
the segment dictionary information. If this
checksum indicator is zero, the p-System
checksum generation unit CHKSOMOPS is called
to insert a wvalid checksum into the library
code file. When the COPY LIBRARIES parameter
is TRUE, PED GENERATE presents a prompt each
time a library code file is updated with a new
checksum.

This prompt asks if you wish the wupdated
library code file to be copied to another
file. When COPY LIBRARIES is FAILSE, no such
prompts are displayed. A detailed description
of the characteristics of this facility was
given in the description of QUICKSTART, above.

3-92

User Interface

The WRITE PROGRESS MESSAGES parameter is used
to control whether or not PED GENERATE writes
progress messages and error messages to the
file OUTPUT. These messages are generated
when this parameter has the value TRUE and are
suppressed when this parameter has the value
FALSE. A detailed description of the format
of the progress messages generated by
PED GENERATE was given in the description of
QUICKSTART utility program.

The following is an example of the type of
progress messages that would be written to the
file OUTPUT as the result of a call to
PED GENERATE with the COPY INPUT and
WRITE_PROGRESS MSGS parameters set to TRUE,
and the COPY LIBRARIES parameter set to FALSE:

3 {opy1ng DISK1 :PROG. code to DISK2:0LD.PROG. code
- - Copying complete. . (134 blocks. copied)
‘Using KERNEL from *SYSTEM.PASCAL
Instalting new checksum into *SYSTEM. LIBRARY
Using LONGOPS from *SYSTEM.LIBRARY -
Including EXPR as segment of MYUNIT1 from DISK1 UNIT1 CODE
" Using MYUNIT1 from DISKT:UNIT1.CODE
Using PASCALIO from *SYSTEM.PASCAL

3-93

User Interface

The reference parameters THE IORESULT and
THE_NAME are used to return information
pertaining to certain errors. Upon entry to
PED GENERATE, THE IORESULT is set to the value
zero, and THE NAME is set to the empty string.
Whenever PED GENERATE returns the results
PGR_JNPUT_EREDR, PGR_OUTPUT ERROR, or
PGR_LIB FRROR, the value of IORESULT is placed
in THE IORESULT. When PED GENERATE returns
the result PGR UNIT ERROR or PGR LIB ERROR the
name of the unit or 1library file being
referenced at the time of the error is placed
into THE NAME.

If the segment dictionary of the program
indicates that the program must be linked
using the p-System linker, PED GENERATE halts
and returns the result
PGR_MUST BE LINKED ERROR.

3-94

User Interface

CHKSUMOPS Unit Interface

Here 1is the 1interface to the p-System
CHKSUMOPS unit:

i unit chksumops;
- inte;facé 2 A :
: const max_¢ chksum f1Le ‘name Length 255;
type chksum;fILe_pame = str1ng[max chksum f1le name lengthJ
chksum_; resul&lé ' : 1

(chksum no error, - %
Tchecksum operatlon
successful}

chksum_obsolete error,] :

K {Checksum in code ¥, . L,
file is obsolete; ! Sl 3 J
that is, the contents

-~ of the file have
- been chqﬂged}_

chksum_io _error
TError openlng,
J reading, or
3 . writing code
i file)

function,chksun_gen(file id:»chksum_fi(e_pame;v_'~
/ var Jorslt: integer):
chksum_result; -

function chksyq_check(fztg_1d:~chksuq_fiié_name;

- var iorslt: integer):
= : o chksum_result;

3-95

User Interface

The CHKSUM GEN function causes a new checksum
to be calculated and installed in the checksum
field of block zero of the code file specified
by the FILE ID parameter. This function
returns the result CHKSUM NO ERROR if the
operation is successful.

The CHKSUM CHECK function calculates the
correct checksum for the contents of the code
file specified by the FILE ID parameter. The
calculated checksum is compared with the
checksum stored in the file. If the checksum
present in the code file isn't zero and
doesn't match the calculated checksum, this
function returns the result
CHKSUM OBSOLETE ERROR; otherwise, the result
CHKSUM_NO FRROR is returned.

Both the CHKSUM _GEN function and the
CHKSUM_CHECK function return the result
CHKSUM_IO ERROR whenever an I/O error is
detected while opening, reading, or writing
the specified code file. If this result is
returned, the IORSLT parameter is set to the
value of IORESULT to indicate the nature of
the 1/0 error.

The checksum value 2zero 1is reserved to
indicate the absence of a valid checksum in a
code file.

3-96

CHAPTER 4

FILE MANAGEMENT UNITS

File Management Units

INTRODUCTION

Your Pascal programs can use the file management
units to accomplish several tasks usually
performed by the filer. There are four file
management units:

DIR.INFO.CODE

WILD.CODE

SYS. INFO.CODE

FILE, INFO.CODE

DIR.INFO provides directory information. Your
programs may use this unit to:

Iist directories.

Parse file names into volume ID, file name,
file type, and size specification.

Change file names.

Change the date associated with a file or
volume.

Remove files.
Krunch a volume.
Mount and dismount subsidiary volumes.

Grant exclusive access rights to a directory
by task.

Release those exclusive access rights.

File Management Units

WILD provides wild card string matching
facilities.

FILE.INFO allows your programs to:

Determine if files are opened.
Find the length of a file.

Determine what storage volume contains
given file.

a

Extract the file title with its suffix, from

a file.
Find the starting block of a file.

Determine whether or not a volume is
storage volume or a communications volume.

Return the date associated with a file.

SYS.INFO allows your programs to:

Determine the device number or volume name
the system disk (the volume referred to
asterisk, "*").

of
by

@ Determine the file names for the work files

and the volumes on which they reside.

4-4

File Management Units

INTERFACE SECTIONS

In order to take advantage of the file
management units, your Pascal programs should
use them in a USES declaration. (These units
aren't available to FORTRAN and BASIC programs.)
For example, to have access to all four units,
you would use this declaration:

“USES {$U wild.code} WILD,
{$U dir.info.code} DIR _INFO,
{$U sys.info.code} SYS_INFO,
{su file.info.code} FILE INFO;

You can then call the routines these units
contain from your programs. Here are the
interface sections of the four file management
units with embedded comments. The routines are
described in detail throughout the rest of this
chapter.

4-5

File Management Units

Unit Interface

Unit Wild; -
- Interface
Type :-'

DL PAtRecP. =/ .. . ST e " D_PatRec; -
D_PatRec = Record)
CompPos, { starting position of pattern in subject string }
CompLen, { length of pattern in subject string }
_ WildPos, { starting position of pattern in wild string } -
HildLen : Integer; { length of pattern in wild card string 3
Next : D_PatRecP; { next pattern) k
End; € D PatRec >

Funct\on D Wild Match(wwld, COmp = string, Var PPtr : D PatRecP,
" - PInfo : Boolean) : Boolean;
{ Compares tuo strings. (one conta1n1ng u1td cards) and returns true if they
~match. - Includes information about pattern matchzng that occurred 1f .
requested (by PInfo) >

File Management Units

Unit Interface

Unit Dir_Info;

Interface-
uses .
(*SU UILD CODE*) uztd-

Type. . el e Y
D_DateRec = Packed Record - sy el
% Month : 0..12;
Day e By
_““Year : 0..100;
End;
D_NameType =

(p_vol, Q_CQde, D_Text, D_bata, D_SVol, D_Temp, D_Free);

D Choice = set of D_NameType;
D ListP = ;

| : D List;
D List =

Record i
D _Unit: Integer;
D_Volume: Stringl71;

- D_VPat: D PatRecP;
D_NextEntry: D_ListP;’
Case D_IsBlkd: Boolean Of

True: (D_Start,

FAS e D_Length: Integer;
ok e Case D_Kind -z
k iy gt DINQl,
D_Temp,
D_Code, : A
D_Text,
D Data,

D " SVol:

. { Unit # of entry }

- L volume name of unit }

€ volume pattern info }

L Next entry in L1st e ek

_{ starting block of entry }

L Length (in blocks)- of -entry }
D NameType of

5 < Everyth1ng but D_| Free }

(D_] Title: Str1ngE15] (F1Le name }
D] _FPat: D)_PatRecP; { name pattern info)
D Date‘ D_DateRec; { File date)
Case D NameType of { # of files on voL p
o D VDL' (D NumF1les- Integer)))-
End;

(p_Okay,
D_! " Not - Found,
. D_| _Exists,
D. Name Error,
D Off ' _Line,
D Other)-

D_Result

Aﬁr‘ﬁr‘i\.‘r'\ﬁ“‘

sts1on accompl1shed }

Couldn't find name and/or type) 3
Name already exists; no name change made }
Illegal string passed oy

Volume not:on Line.}

Miscellaneous error ¥

Function D_Dir L1st(D Name- Str1ng, D Selec'- D. Cho1ce,

Var D Ptr. "D L1stP, D PInfo.

{ Creates pointer to Llist of names of 5pec1

Boolean): D. Result, ; S
Fed NameTypes 3

4-7

File Management Units

- (D_Select), matching specified D_Name (wild card characters allowed).
Includes information about pattern matching that occurred if requested
(by D_PInfo) }

Function D _Scan_Title(b_Name: String; Var D VoLume, D Title: String;
= Var D Type- D NameType, Var D_Segs: Integer): D_| Result'
* { Parses D)_Name ¥-

Function D_Change Name -
(€] OLdName, D_NewName: String; D RemOLd Boolean)' D_Result;
{ Changes file name in D OldName to ‘name_in D_NewName, removing already
existing files of name in D_NewName if D_RemOLld is set }

- Function D_Change Date(D ! Name: String; D_! NeuDate- D DateRec,
D_! select: D Choice). D_Result;
{ Changes date of d1rectory or file name in D Name to date spec1f1ed by
D_NewDate. D Name may contain wild cards ¥

Function D Rem Files (D Name: Str1ng, D Select: D cho1ce)' D | Result-

{ Removes 71Le of specified name (w\Ld Tcards alloued) o

Procedure D Lock,

Procedure D ReLease,

{ Provide means to. limit use of DirInfo rout1nes to one ‘task at a time
in multitasking environments)

Functlon) Krunch (D> Un1t, D Block: Integer)- D Result,
{ Collects all unused space on a volume around D Block. This unit must
not.be in use when th1s operat1nn is performed. 3

Funct1on D_Mount (D lee Name : String) = D Result,

Function D DisMount | (p_\ VoL Name : String) : D_Result;

G Prov1des a means of mount1ng and d1smount1ng subs1d1ary volumes.
N1Ld ‘cards may be used.)

File Management Units

Unit Interface

4-9

File Management Units

Unit Interface

Unit FileInfo;
Interface

Type F_File Type = file; ¥
F_Date Rec = Packed Record

Month : 0..12;
Day 00315
Year : 0..100;

End; { F_Date Rec }-
Function F Open (var f1d.' F_fiLq_Type):Soolean;
" (* returns true if the file is open and false if not open *)
' Funétion F_}eﬁgth (Var Fid :‘F_filq_Type) ; In£éger;

{Returns the length of the file attached to the Fid identifier.
If the file is not opened result is returned as zerol}

Funﬁtion F Un%t number (Var Fid : F_| F1Le Type) : integer;

{Returns the unit containing the f1Le attached to the Fid
identifier. If there is no file opened to Fid, the function
result is Zero.)} -

Procedure'?_Volume (Var Fid : F_File Type;
3 ~ Var File Volume : String);

_{Returns the name of fhe volume containing the file attached

to the Fid identifier. If there is no file opened to Fid,
_the file volume is set to a null string.}

."Procedure F| File Title (Var -Fid : F_| F1le Type,'
; Var File T1tLe s String);

(Réturns the_tﬁf(e (uith suffix) of the.file attached to the
Fid identifier. If there is no file opened to Fid,
‘the File_title is set to the null string.}
Function F . start (Vér Fid :.F_File Type).-'integer;
(Returns the block number of the f1rst block -of the f1Le
attached -to- the Fid identifier. ' If there is no file opened
- to Fid, the function result is returned is zero.}

e Function F_is Blocked (var Fid : E_?ilé;Iype)v: Boolean;

" (Returns a boolean.thatbfs:TRUE if the file attached to the
Fid identifier is located on a storage device. If there

is no file'openedffor the Fid or if the unit is not a storage

4-10

File Management Units

4-11

File Management Units

DIRECTORY INFORMATION

This section describes the directory information
unit, called DIR INFO, which enables your
programs to access file system information.

Many of your applications may need to access and
modify directory information. This unit makes
it easy to perform most of these sorts of
operations. There are other ways to do this.
The most common solution is to construct your
own routines that directly access the operating
system's data structures. However, the
interfaces provided by this unit make directory
information access much safer and easier.

The DIR _INFO unit provides the following
capabilities to your programs:

@ Directory Information Access. For any
on-line storage volume, DIR INFO returns the
volume name, volume date, number of disk
files on volume, amount of unused space, and
attributes of individual disk files.

@ Directory Manipulation. DIR _INFO provides
routines for changing the date or name of a
disk file or volume, removing files from a
volume, and mounting and dismounting
subsidiary volumes.

@ File Manipulation. DIR INFO allows you to

Krunch a volume in a similar fashion to the
filer.

4-12

File Management Units

@ VWild Cards. DIR _INFO uses the UNIT WILD,
which provides a wild card convention for
pattern matching of string variables. Most
DIR INFO routines recognize the wild card
convention in their file name arguments.

@ Frror Handling. DIR INFO defines a standard
error result (similar to UCSD p-System I1/0
results) for routines involved with file
names and directory searches.

@ Multitasking Support. DIR INFO provides
routines for protecting file system
information from contention between
concurrent tasks. These routines ensure that
only one task can modify file system
information at a time.

Notation and Terminology

In this chapter, a variant of Extended
Backus-Naur Form (EBNF) is used as a notation
for describing the form of wild cards and file
names. Meta-words are words that represent a
class of words; they are shown in the text by
the use of angle brackets < \ >. The
following expression is an example:

<fish> = trout | salmon | tuna

4-13

File Management Units

The equal sign (=) indicates that the
meta-word on the left side can be substituted
with the word on the right side. The bar (
) separates possible choices for substitution.
In this example, "fish" can be replaced by
"trout," "salmon," or "tuna."

An item enclosed in square brackets [\] may
be substituted into a textual expression. For
example, [microlcomputer can represent the
text strings computer and microcomputer.

An item enclosed in braces { \} can be
substituted zero or more times into a textual
expression. The following expression
represents responses to jokes possessing
varying degrees of humor.

..~ .<joke-response> = Chay

literal occurrences of characters or strings
of characters are delimited by quotes to avoid
confusing them with notational definitions.
For example:

. left-bracket = "< / ngt./ MLt

The term <file-object> is used throughout this
chapter; it is a generic term encompassing
comminications and storage volumes, files, and
unused areas on storage volumes.

4-14

File Management Units

File Name Arguments

Most DIR_INFO routines accept file name
arguments. The file name specifies the volume
and/or file to be accessed by the routine.
You should see the Operating System Reference
Manual for a complete description of p-System
files and file names if you aren't familiar
with them.

Volume names and file names may contain wild
cards (which are described in the next
section). Device numbers and colons
separating volume IDs and file names must
appear literally; they must be independent of
any wild card.

A1l DIR INFO routines except D Scan Title
ignore file length specification. In some
cases, file name conventions in DIR INFO
differ slightly from p-System file name
conventions:

@ DIR_INFO considers an empty
volume ID/file name argument to specify the
prefix volume; that 1is, <file name> is
empty (implying a volume reference), and
<volume ID> is empty (implying the prefixed
volume). An empty string isn't a wvalid
file name in the p-System.

4-15

File Management Units

@ DIR INFO interprets wild card file names of
the form <vol-name>:= to be valid volume
specifiers. This 1is consistent with
DIR INFO's definition of the (=) wild
card, but inconsistent with the p-System
filer's interpretation of the (=) wild
card. The filer doesn't accept file names
of this form as volume specifiers.

File Type Selection

Some DIR INFO routines accept a <file-type>
parameter (named D SELECT) which is used to
specify the file objects to be accessed.
(File objects include volumes, unused areas on
storage volumes, temporary files, text files,
code files, and other types of files.) The
file type parameter is necessary because file
names alone can't completely specify all types
of file objects (such as unused disk areas).
The routines that generate directory
information use bhoth the file name argument
and the D SELECT parameter to determine the
file objects on which to return information.

4-16

File Management Units

DIR_INFO defines a scalar type, which is used
to specify file objects. D SELECT is declared
as a set of this type; a file object is
selected by including its corresponding scalar

in D_SELECT.

File object types:

D NameType = (D Vol, D Code, D Text,
D Data, D SVol, D Temp,
D Free);

D Choice = Set Of D NameType;

Here is a description of these scalar values:

@ D Vol. Selects all volumes matching the
file name argument. Note that while volume
names may contain wild cards, device
numbers must be specified literally.

@® D Free. Selects all unused areas of disk
space on the volumes matching the file name
argument.

@ D Temp. Selects all temporary files
matching the file name argument. Files are
considered temporary if they have been
opened—and not yet closed—by a program.

@ D Text. Selects all text files matching
the file name argument.

@ D Code. Selects all code files matching
the file name argument.

4-17

File Management Units

@ D Data. Selects all data files matching
the file name argument.

@ D Svol. Selects all svol files matching
the file name argument.

File Dates

Disk files and disk volumes are assigned
(file-dates>. File dates are stored in
records of type D Date Rec. They are accessed
and modified by the DIR_INFO routines
D Dir List and D Change Date.

D Date Rec is declared as follows:

D Date Rec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..100;
End; { D Date Rec }

A year value of 100 in a file date record
indicates that the object is a temporary disk
file. (This is a p-System file system
convention.)

4-18

File Management Units

Error Results

All DIR INFO routines that access file system
information return a value reflecting the
result of the file system operation. This
result dindicates either that the routine
finished without errors or that an error
occurred. Valid information isn't returned
when routines return a result value indicating
that an error has occurred.

The following items describe conditions that
can cause errors:

@ The specified files, volumes, or unused
spaces can't be found in the disk
directory.

@ The specified unit is off-line.

The file name argument has improper syntax.

@ The specified file name conflicts with an
existing file.

An error can never cause a function to
terminate abnormally. Errors that the routine
can't identify explicity are flagged. This is
done by returning a result that indicates an
unknown error has occurred.

4-19

File Management Units

DIR_INFO defines the following scalar type to
describe the possible errors encountered:

Type D Result = (D Okay,
D Not Found,
D Exists,
D Name Error,
D Off Line,
D Other);

You should refer to the descriptions of the
various routines for details concerning the
results of errors and the status of directory
information returned during error conditions.

The DIR INFO Routines

Function D Krunch
(D _Unit:integer;
D Block:integer):D Result;

This function Krunches the files on the volume
specified by D Unit. This is similar to the
filer's K(runch activity. The block indicated
by D Block 1is the point around which the
unused disk space 1is consolidated. Files
located bhefore D Block are moved forward
(toward the directory) and files after it are
moved backward (toward the last track).

4-20

File Management Units

NOTE: Using D Krunch on a volume that
contains an executing or open file (including
the operating system) may destroy the files.
If function D Krunch changes the location of
an open or executing file, the system returns
data to the previous—not the
present—location of the file.

Function D Mount
(D_File Name:String):D Result;

The D File Name parameter identifies an svol
file. The corresponding subsidiary volume is
mounted unless D Result indicates otherwise.
Wild cards may be used.

Function D DisMount
(D_Vol Name:String):D Result;

The subsidiary volume identified by the
D Vol Name parameter is dismounted. This
volume must be a subsidiary volume.

Function D Scan Title
(D_NAME:String; Var D VOLUME,
D TITLE: String; Var D TYPE:
D NameType Var D SEGS
Integer): D Result

D Scan Title parses the p-System file name
passed in D) NAME and returns the file name's
volume 1D, “file name, file type, and file

length specifier, The function result
indicates the validity of the file name
argument. D Scan Title doesn't determine

whether or not D Name actually exists.

4-21

File Management Units

D Scan Title accepts the following parameters.

D NAME. A string containing a p-System
file name.

D VOLUME. A string that returns the volume
ID contained in D NAME. If D NAME contains
no volume ID or if the volume ID is (:),
D VOLUME is assigned the system's default
volume name. If the volume ID is (*) or
(*:), D VOLUME is assigned the system's
boot volume name. Volume names assigned to
D VOLUME contain only uppercase characters
and don't contain blank characters.

D TITLE. A string that returns the file
name contained in D NAME. If D NAME
doesn't contain a file name, D TITLE is
assigned the empty string. File titles
assigned to D TITLE contain only uppercase
characters and don't contain blank
characters.

D TYPE. A scalar which returns a value

indicating the file type of the file name
contained in D_NAME.

4-22

File Management Units

The following items define D TYPE's scalar
type:

D NameType = (D _Vol, D Code, D Text,
D SVol, D Data, D Temp, D Free,);

D TYPE is set to D Vol if the file name in
D NAME is empty. D TYPE is set to D Code
if the file name is terminated by ".CODE",
or to D Text if the file name is terminated
by ".TEXT" or ".BACK". D TYPE is set to
D SVOL if the file name ends with .SVOL (a
subsidiary volume). If none of the above
holds true, D TYPE is set to D Data. Only
the suffix of a file is used to determine
what type it is. For example, the file
name SYSTEM.COMPILER is returned as a data
file because its suffix isn't .CODE.

D SEGS. An integer that is assigned a value
indicating the presence of a file length
specifier in D NAME. The value returned in
D SEGS is assigned as follows:

LENGTH SPECIFIER D SEGS VALUE
[<number>] <number>
[*] —i
<{not present> 0

4-23

File Management Units

D Scan Title returns a function result of
type D Result. The only scalar values
returned by D Scan Title are D Okay and
D Name Error; they have the following

meanings:

@ D Okay. No Error.

All information

returned by D Scan Title is valid.

@ D Name Error. Illegal file name syntax
in D NAME. The information returned by

D Scan Title is invalid.

Example Program

Program Scan_Test;
Uses
(*SUHILD.CODE*)
wild,
(*SUDIR INFO.CODEX)
pDirInfo;
Var
Name,
Volume,
Title : String;
Typ : D_NameType;
$eg_Flag : Integer;
Result : D_Result; .
Ch : Char;
Begin { Scan Test 2}
Writeln('— D_ScanTitle Test');

Repeat
Writeln;
Write('File name to parse- ')
Readln(Name) ;

Result := D- SCanthLe(Name, Volume, Title,

Typ, Seg_| Flag);
Writeln('parsed: ");
case result of
d_okay:begin

Writeln(' File name — ', Title);

Write(" File type — ');

Tase Typ Of
D_Text : Writeln('text file');
D_Code : Writeln('code file');
D_Data : Writeln('data file');
D_ _SVol : Writeln('svol file');

End { Cases }

If Seg Flag <> 0 Then

Wwriteln(" Volume name — .', Volume);

writeln(' Segment flag — ', ség_FLag);

end;

d name_error: ur1teLn(' Name error');

end

4-24

File Management Units

‘Writeln;
_Mrite('Continue? *);
- Read(Ch) ; ;
Writeln;
Until Ch In C'n', 'N'];
End. { Scan_Test)

Function D Dir List
(D NAME:String; D SELECT : D Choice;
Var D PTR : D ListP;
D PINFO : Boolean) : D Result;

D Dir List creates a 1list of records
containing directory information on volumes
and disk files. This information includes
volume names and device numbers of storage
and communications on-line volumes, number
of files on storage volumes, lengths and
starting blocks of disk files and unused
disk spaces, file names and types, and file
dates. The function result value indicates
invalid file name arguments, off-line
volumes, or not-found files.

D Dir List optionally provides information
describing how the wild card file name
argument matched files and/or volumes.

D Dir List accepts a set specifying the
file types on which to return information
and a string containing a file name.
D Dir List returns a pointer to a linked
list of directory information records.
Each record contains the name of a file or
volume which matches the file name argument
and also is one of the types specified in
the file type set.

4-25

File Management Units

D NAME. The D NAME parameter contains a
file name which may contain wild cards.

D SELECT. The D SELECT parameter is a
set specifying the directory objects for
which information is to be returned by
D Dir List. See the file type selection
for more information on directory object
selection.

D PTR. The D PTR parameter is assigned
a pointer to a linked list of records
containing directory information for all
specified file objects. To be listed in
a directory, a file object must meet the
following criteria.

@ It must reside on a volume which
matches the volume ID in D NAME.

@ I1f the object is a disk file, it nmust
match the file ID in D NAME.

@ 1t must belong to one of the types
included in D_SELECT.

4-26

File Management Units

The linked 1list contains one
each file object matched. The
defined as follows:

Db stpes s
D List = Record

D _Unit = Integer,

D _Volume : Stringl?7];

D VPat : D > PatRecP;

D_NextEntry : D ListP;

Case D_IsBlkd : Boolean of

- True : (D Start,
D Length Integer,
- Case o_} K1nd 2R NaueType of

b List;

«(p_Title : String [151;
- . D._FPat- ‘s D_PdtRecP; =
: D |) _Date DU) DateRec;
Case D NameType of-
D_Vol: (D NumF1les nteger)))

End;

The D lList record fields
following information for each
in the D Ptr list.

return

record for
records are

the
file object

@ D Unit returns the device number of the

device containing the object.

containing the object.

information

D Volume returns the name of the wvolume

D VPat is a pointer to pattern matching
collected while

comparing

volumes to the volume ID in D NAME (see
the section on the wild unit for details

on pattern matching

information).

D VPat is set to NIL if pattern matching

information isn't requested.

4-27

File Management Units

@ D NextBntry is a pointer to the next
directory information record in the
list. It is set to NIL if the current
record is the last record in the list.

@ D IsBlkd is set to TRUE if the file
object 1is (or resides on) a storage
volume. Records describing serial
volumes have D IsBlked set to FALSE; the
remaining fields are undefined.

The following fields exist only in records
describing file objects stored on storage
volumes (that is, D IsBlkd is TRUE):

@ D Start contains the starting block
number of the file object. If the
object is of type D Vol, this value is
interpreted as the block number of the
first block on the volume (that is 0 for
disk volume).

@ D Jength contains the length (in blocks)
of the file object. If the object is of
type D Vol, this value is interpreted as
the total number of blocks on the volume
(such as 320 for a typical single
density, 5-1/4" diskette).

@ D Kind indicates the type of the file
object described by the current record.

4-28

File Management Units

The following fields exist only in records
describing disk file objects other than
unused disk areas (such as D Kind in
[D Vol, D Temp, D Code, D Text, D Data,
D Svoll):

@ D Title contains the file name of the
object. For objects of type D Vol, this
field contains the empty string.

@ D FPat is a pointer to pattern matching
information collected while comparing
file names to the file ID in D NAME (see
wild card UNIT for details on pattern
matching information). D FPat is set
NIL if pattern matching information
isn't requested or if the file ID in

D NAME is empty.

@ D Date contains the file date for the
current object.

@ D NumFiles is valid only for objects of
type D Vol; it contains the number of
files in the volume's directory.

NOTE: An .SVOL file (which contains a
subsidiary volume) appears as any other
file on the principal volume. This means
that D NumFiles doesn't correspond to an
.SVOL file. However, when accessed by its
volume 1ID, the actual subsidiary volume
returns with a valid D NumFiles entry.

4-29

File Management Units

File information is returned (in a linked
list accessed by D Ptr) in the following
order:

1.

20

3

Volume on highest numbered device that
matches D NAME (if D Vol is in D SFLECT).

Files in directory of this volume that
match D NAME and are of one of the types
in D SELECT (if a file type is in
D SFLECT).

Last file on volume

First file on volume

Unused spaces on this volume (if D Free
is in D SELFCT).

Last free space on volume

First free space on volume

Volume on lowest numbered device that
matches D NAME (if D Vol is in D SELECT).

Files in directory of this volume that
match D NAME and are of one of the types
in D SELECT (if a file type 1is in
D SELECT).

Last file on volume

L]

First file on volume

4-30

File Management Units

6. Unused spaces on this volume (if D Free
is in D SELECT).

Last free space on volume

First free space on volume

D_PINFO

When set to TRUE, the D PINFO parameter
indicates that pattern matching information
should be returned in a linked list accessed
by D_PTR. The D WILD MATCH function
collects this information while comparing
volume and file 1IDs; it is wuseful for
determining how the wild cards were expanded
in D NAME. Information is returned in two
pointers; one for volume names matched
(named D VPat) and one for file IDs matched
(named D FPat).

The following is an example of pattern
record lists:

- D_NAME is set to '=:TEST{1-9)="

Two volumes contain files which match
D NAME:

BOOT contains TESTS.CODE

WORK contains TESTS5.TEXT
4-31

File Management Units

For BOOT:TEST5.CODE, D Volume is 'BOOT',
D Title is 'TEST5.CODE', and D VPat returns
a pointer to the following information.

1. WildPos is 1, Wildlen is 1
CompPos is 1, Complen is 4
('=" matches 'BOOT')

D FPat returns a pointer to the following
information.

1. WildPos is 1, WildlLen is 4
CompPos is 1, Complen is 4
('TEST' matches 'TEST')

2. WildPos is 5, WildlLen is 5
CompPos is 5, Complen is 1
('{1-9}' matches '5')

3. WildPos is 10, WildLen is 1
CompPos is 6, Complen is 5
('="'" matches '.CODE')

A similar list is returned for
WORK : TESTS . TEXT.

NOTE: 1If the volume ID in D NAME consists
of a device number (such as "#5"), the
volume assigned to the device is defined to
match the volume ID in D NAME. The Pos and
len pointers are set as in the following
example.

© D_NAME is set to vHS

4-32

File Management Units

A disk volume named '"MYDISK" resides in
device 5.

1. WildPos is 1, Wildlen is 2
CompPos is 1, Complen is 6
('#5' matches 'MYDISK')

NOTE: D FPat and D VPat never contain
invalid information. = If information is
unavailable or hasn't been requested, the
pointers are set to NIL.

Function Result

D Dir List returns a value of type D Result.
D Dir | List can return all scalar values
defined in D) Result except D Exists; the
values have the following meanings:

@ D Okay. No error. All D Ptr information
is valid.

@ D Not Found. No such file/volume found.
No match found for D NAME. D Dir List
sets D Ptr to NIL.

@ D Name Error. Illegal syntax in D NAME.
D]) Dir Llst sets D Ptr to NIL.

4-33

File Management Units

@ D Offline. Volume off-line. The volume
specified by D NAME wasn't on-line. This
error occurs only when the volume ID in
D NAME doesn't contain wild cards (that
is, a single volume is specified, and it
is off-line). If the volume name in
D NAME contains wild cards but doesn't
match any on-line volumes, D Dir List

returns D Not Found. D Ptr is set to
NIL.
@ D Other. Unknown error. D Dir

encountered an error it couldn't
identify, but which interrupted normal
execution of the function. D Ptr is set
to NIL. -

4-34

File Management Units

Example Program

The following program 1is a general purpose
directory 1lister; it accepts a string
containing wild cards and creates a list of
matching files and (if requested) pattern
matching information for the files. Note
that the program uses the MARK and RELEASE
intrinsics to remove the D Dir List
information from the heap after the
information has been used.

Program Listtest;
Uses
(*SUWILD.CODE*)
wild,
(*$SUDIR.INFO.CODE*)
Dirnfo;

Var ;
Select : D Cho1ce,'

Want_Patterns : Boolean, 4 S
Heap_| " Ptr : e Integer;
Segs : Integer;

Typ = D_NameType;

Volume, Title, Match : Str1ng,

Result : D_Result;

Ch : Char; o

Ptr .z D_ListP;. -

. Procedure Givechoice(éhoice : String;
Kind : Q_Choicé);

Var :
; Ch : Char;
_Begin i
Write("' ' ,Choice,' 2 ');

_Read(Ch); Writeln;
If Ch-In ['y', 'Y'] Then Select := Select + Kind;
End; { G1veCho1ce >

Procedure Pr1nt Patterns(PatPtr : D_PatRecP;
Comp, Wild Str1n9) 7
Var :

Count : Integer;

Begin { Print_Patterns }
Count := 1;
jr1teln('type <cr> for patterns')
Readln; MWriteln;
Repeat
Writeln('Pattern ', Count, ' :');
With PatPtr Do

4-35

File Management Units

Begin 3
Writeln(* Comp : ', Comp);
If Compten <> 0 Then
Write(' '-(CompPos +9));
1f CompLen > 1 Then Hr1te(’ - ':(CompLen -- 1))-
Writeln; :
Writeln(* Wild = ', Wild);
Write(' - s ‘:(WildPos + 9));
If WildLen > 1 Then Write(' - ':(WildLen == 1));
: Writeln; Writeln;
-End;
PatPtr := PatPtr B Next;

Count := Count + 1;
Until PatPtr = Nil
End;. € Print_Patterns }

Procedure Print_Info(Ptr : D_ListP);

Begin { Print_Info }
Repeat
With Ptr- i Do
Begin
If D_IsBLkd Then
Case D _Kind Of

D_Free : Write('Free space on ');
D_Vol : Write('Volume ");
D Temp : Write('Temporary file on ');
D_Text : Write('Text file on.');
D_Code : Write('Code file on '); -
D_Data : Write('Data file on ');
D_SVol : Write('svol file on ');

End { Cases)

Else
Write('Communications volume ');
Writeln(p Volume);
If Want Patterns And (D_VPat <> Nil) Then
Begin
Writeln;
Writeln(' Volume patterns:');
Print_Patterns(D_VPat, D_Volume, Volume);
End;)
Writeln(' Unit number ', D_Unit);
If D_IsBlkd Then
Beg1n
If Not (D_| K1nd In [D_Vol, D_Freel) Then
Writeln(* File name oeesecess '» D_Title);
If D Kind <> D_Free Then
Begin
If Want_Patterns And (D_FPat <> Nil) Then
Begin : p
Writeln(* " File name patterns:');
Print_Patterns(D_FfPat, D Title, Title);
End; S
With D Date Do ;
Writeln("® File date .euswaans '
Month, '/', bay, '/', Year);

End; € If D_Kind 3
If p_Kind = D_Vol Then

Writeln(' Files on volume ... ', B NumFiles);

Writeln(® Starting block .aa. ', D_Start);

Writeln(® File length ', D _Length);
End; { If D_IsBlkd }

4-36

File Management Units

End; { With Ptr 2
Writeln; ¢
Write('Type <cr> for rest of List');
Readln; Writeln;
Ptr := Ptr : . «D_NextEntry;
~Until Ptr = Nijl
End; € Print_Info }

Begin { Listtest }
Repeat

Mark(Heap_Ptr);

Select := [1;

Writeln('Directory Lister —');

Write('Volume and/or file name to match- ')'

Readln(Match);

Write('Return pattern matching 1nformat1on° [y/n] e

Read(Ch); Writeln;

Want_Patterns := Ch In ['y', 'Y'];

If Want_Patterns Then
Result := D_ScanTitle(Match, Volume, Title, Typ, Segs);
Writeln('Types [y/n 1 : ')'
GiveChoice('Directories’, [D_Voll);
GiveChoice(*Text Files ', [D Textl);

(
GiveChoice('Code Files ', [D_Codel);
GiveChoice('Data Files ', [D_batal);
GiveChoice('Temp Files ', [D_Templ); .
GiveChoice('Free Space ', [D_Freel);-
GiveChoice('sVol Files *, LD _SVold);

Result := D D1rL1st(Match, Select, Ptr, Want_Patterns);

Writeln;
If Ptr <> Nil Then
Print_Info(Ptr)
Else
Case Result Of 2
D_Name Error : Writeln(' Error in file name');
D_Off I Line : Hriteln(' Volume off Line');
D!)_Not_| Found Writeln(*® File not found'); .
D_(» Other : Writeln(' Miscellaneous error'); -
End; {cases)
Writeln;
Repeat

Write('Continue 2 ');
Read(Ch); Writeln;
Unta Ui ChEInY ECn Y UN S y Y Y T
MWriteln;
Release(Heap_Ptr);
Until €h In ['n*, 'N'];

End. { listtest }

4-37

File Management Units

Function D Change Name
(D_OLD NAME, D NEW NAME : String;
D REMOLD : Boolean) : D Result;

D Change Name searches for the volume or
file designated by the file name contained
in D OLD NAME and changes its name to the
file name contained in D NEW NAME.

D Change Name only changes one file name at
a time, and thus doesn't accept file names
containing wild cards; however, it can be
combined with other Dir Info and wild card
routines to create user-defined file name
changing routines that accept wild cards.

D Change_Name accepts the following
parameters.

@ D OILD NAME. A string containing the name
of the file to be changed. If the file
name 1is invalid, D Change Name returns
D Name Error. Note that wild card
characters are treated literally.

@ D NEW NAME. A string containing the
replacement file name. If the file name
is invalid, D Change Name returns
D Name Frror. Note that wild card
characters are treated literally.

4-38

File Management Units

If D OLD NAME contains an empty file
title, D Change Name changes the name of
the volume specified by D OLD NAME to the
volume name in D NEW I NAME; any file title
in D NEW NAME is ignored. If D OLD NAME
contains a nonempty file title,
D Change Name changes the name of the
disk file specified by D OLD NAME to the
file title in D NEW NAME; any /7 volume name
in D NEW NAME is ignored. If the file ID
in D NEW NAME is empty, D Change Name
returns D Name Error.

D REMOLD. If set to TRUE, D REMOLD
indicates that an existing file or volume
designated by the file name in D NEW NAME
may be removed in order to change the
file name. If set to FALSE, the presence
of an existing file or volume with the
same name as D NEW NAME aborts the name
change, and D Change Name returns
D Fxists as a function result.

D Change Name returns a value of type
D Result. D Change Name can return all
scalar values defined in D Result; the
values have the following meanings.

@ D Okay. No error. D OLD NAME was

found and its name changed.

@ D Not Found. No such file/volume

found. No match found for D OLD NAME.
No change made.

4-39

File Management Units

@ D Exists. The name change was blocked
by the presence of an existing file
with the same name as D NEW NAME. No
change made.

@ D Name Error. Illegal file name
syntax in D OLD NAME or D NEW NAME.
No change made.

@ D Off Line. Volume off-line. The
volume specified by D OLD NAME wasn't
on-line. No change made.

@ D Other. Unknown. D Change Name

encountered an error it couldn't
identify. No change made.

4-40

File Management Units

Example Program

The following program demonstrates how
you might use D Change Name.

Program chngtest;
Uses
(*SUWILD.CODE®)
wild,
(*SUDIR.INFO.CODE*)
DirInfo;

Var
RemOld : Boolean;
old, New: String;
Ch : Char;
Rslt : D_Result;

Begin { chngtest)
Writeln('D_ChangeName Test — ');
Repeat
Writeln;

Write('Name to change : ');

Readln(old) ;

Write('New name : *);

Readln(New) ;

Write('Remove existing files (if any) of that name ? [y/nl *);
Read(Ch); Writeln;

RemOld := Ch In ['y','Y'];

Case D_ChangeName(Old,New, RemOLd) Of

D_Ok;y : Writeln(' No error');

D_0ff Line : Writeln(* Volume off Line');
D_Name Error : Writeln(' Error in file name®);
D_Not_Found : Writeln(’ File not found®');
D_Other : Writeln(’ Miscellaneous error');
End; { cases ¥

Writeln;

Write('Continue ? *);
Read(Ch); Writeln;
until ch In T'n', °N'1;
End. { chngtest }

4-41

File Management Units

Wild Card File Name Change

D Change Name doesn't accept wild card file
name arguments; however, it can be combined
with the pattern matching information
returned by D Dir List to implement a wild
card, file name changing routine. (Note
that this routine must use directory locks
in multi-tasking environments.)

For example, assume that you have the
following files:

TEST1.TEXT
TEST12,.CODE
TEST.DATA

You would 1like to change them to the
following names:

OLD1A.TEXT
OLD12A.CODE
OLDA.DATA

This can be performed by using D Dir List to
search for the file name 'TEST=.='. The
pattern matching information returned by
D Dir List can be used to create new file
titles; in this case, 'TEST' is replaced
with 'OLD', and the first '=' is replaced
with the concatenation of the pattern
matched by the '=' and the literal string
'A', The part of each file title matched by
the period and the second '=' wild card is
unchanged. D Change Name is called with the
modified file title for each file matched by
D Dir List.

4-42

File Management Units

Example Program

The following program demonstrates how you
might use D Change Name and D Dir List when
constructing a specialized file name
changing utility. The program accepts a
file name argument containing two '=' wild
cards; for each file which matches the
argument, the file title 1is changed by
swapping the string patterns matched by the
two '=' wild cards.

Program WildChange;
Uses: i
(*SUWILD.CODEX)

wild, s i
(*SUDIR.INFO.COU;*)
DirInfo;

Var : “ :
Heap Ptr : . T Integer;
Typ : D_NameType; [T

Segs : Integer;

Select.: D_Choice; :

Volume, Name, Match : String;

Result : D_Result;

Chivs Ehan;

Ptr.: D_ListP;

Procedure GiveChoice(Choice : §tring; Kind : D_'choice);

Vaps.< < .
“#-Chi s Char;
Begin 3 3 X
Write(' ',Choice,' 2 *);

Read(Ch); Writeln; <!
If Ch In C'y"', 'Y'] Then Select := Select + Kind;
End; { GiveChoice ¥ ; 2 s

Procédure Print;?atferns(PatPfr : D_PatRecP; -

Comp, Wild : String)
Var

Count : Integef;

4-43

File Management Units

Begin €

Print_Patterns }

Count := 1;

Writeln(*type <cr> for patterns');
Readln; Writeln;

Repeat

Writeln('Pattern ', cOunt, LR T
With PatPtr - :
Begin

Writeln(*

Comﬁ ', Comp);

If CompLen <> O Then
Write('
If CompLen > 1 Then Write('

Writeln; .
Writeln(' Wild : ', Wild);
Write(*
- If WildLen > .1 Then Nr1te('
Writeln;Writeln;
End; -
PatPtr := PatPtr
Count := Count + 1;
Until PatPtr = Nil

End; { Print_Patterns }

Print_Info(Ptr

Procedure 5
Volume, Name : String);
Begin { Print_Info }
Repeat
Writeln('"MATCHED FILE —');
With Ptr
Begin

Write(D VQLume, AR

IfD IsBLkd Then
i Length(p_Title) > 0 Then
Write(D Title);
Writeln;

D_ListP; Want Patterns

bo

':(CompPos + 9));
':(CompLen - 1));

':(WildPos + 9))-
':(WildLen = 1));

.Next;

: Boolean;

Do

If Want_Patterns And (b_VPat <> Nil) Then

Beg1n 3
© Writeln;
Writeln('
Print_Patterns(D_VPat,
End; %
If D_IsBLkd Then

Volume patterns:');
D_Volume, Volume);

1f | Want_Patterns And (D FPat <> Nil) Then

Beg1n .
Writeln(® File name patterns:');
Print_Patterns(D_FPat, D Title, Name);
I .End;
End; { With Ptr ¥

Writeln;

Write('Type <cr> for rest of List");

Readln; Writeln;

Ptr := Ptr -D_NextEntry;

Until Ptr = Nil g

End; { Print_ Info }

4-44

File Management Units

Procedure Change(Ptr : D _ListP; Name : String);
Var

I, Posl, Len1, Pos2, Len2, Last Pos,

Mid Pos, Last Equal : Integer;

Pat1, Pat2, Title, New : String;

Procedure Find Equal(D_Title, Name : String;
Var PatPtr : D PatRecP;
Var Pat : String;
Var Pos, Len : Integer);

Begin { Find _Equal }

While (Name[PatPtr .WildPosl <> '=') And
(PatPtr -Next <> Nil) Do
PatPtr := PatPtr -Next;
With PatPtr 3 Do -
Begin

I1f CompLen = 0 Then Pat := '
Else Pat := Copy(D Title, CompPos, CompLen);
Pos := CompPos;
Len := CompLen;
End;
End; € Find Equal }

_Begin { Change 2}
With Ptr Do
Begin)
Find Equal(p_Title, Name, D_FPat, Pat1, Posi, Lenl);
If D_FPat <> Nil Then
Begin
D_FPat := D FPat Next;
Find Equal(D _Title, Name, D_FPat, Pat2, Pos2, Len2);
New := D_T1tle,
Last Pos := Pos2 + Len2;
Mid | Pos := Post + Len2;
Last ._Equal := Last Pos - Leni;
For I := Pos1 To M1d_Pos -1 bo { 1st '=' >
New[IJ := Pat2[I - Posl + 11; ¢
For I := Hid Pos To Last_Equal = 1 Do
NewCI] := D TitlelI - Len2 + Len1l;
For I := Last Equal To Last Pos = 1 Do { an =)
NewCI] := PatilI - Last_ﬁqual + 11;
New := Concat(D _Volume, *:', New);
Title = Concat(n) Volume, *:', D Title);
Result := D ChangeName(T1tle, New, True)-
write(Title, '=>*, New);
Case Result 0f
- D_Name Error : Write(' Error ih file name');
D Off Line : Write(" Volume off Line');
D Not_Found-: Write(' File not found');
D_(_Other : Write(® Miscellaneous error');
End; {cases} : ; ; ;
Writeln;
= End; { if D_FPat }
End; { with) .
End; { Change }» .

4-45

File Management Units

Function Display(s, Match, Volume, ‘Name : String;
Select : D _Choice) : D_ListP; i
Var :
Ch : Char;
“Ptr, -z D_ListP;
Want_Patterns : Boolean;
Result : D_Result;

Begin { Display }

Writeln; Writeln(s);

Write(* Display pattern match1ng information ? *);
Read(Ch); Writeln;

Want_§ Patterns s=aChiIn Eylt st yia=

Result := D D1rList(Hatch, Select, Ptr, True)-
If Ptr <> Nil Then

Print_Info(Ptr, Want_Patterns, Volume, Name).

Else
Case Result Of ; g
D_Name Error : Writeln(' = Error in file name');
D_ off Line : Writeln (' Volume off Line');
D | Not Found : Writeln(' File not found');
D_Other : Mriteln(' Miscellaneous error');

End; {cases}
Display := Ptr;
End; { Display X

Begin { WildChange }

Writeln;

Repeat
Mark (Heap_Ptr);
Select := [1; ;
Write('File title to match (must contain two ''='"): ");
Readln(Match); . ;
Result := D_ScanTitle(Match, Vo{ume, Name, Typ, Segs);
Writeln('Types L y/n' 1 : *);

‘ 6iveChoice('Directories', [D_Voll);
GiveChoice('Text Files ', [D Textl);
GiveChoice(’Code Files ', [D_Codel);
GiveChoice('Data Files ', [b_Datal);

‘GiveChoice('svol Files ', [D Svoll); Y
Ptr := Display('old Files :', Match, Volume, Name, Select);
If Ptr <> Nil Then :

“Begin s) =
Repeat i T
- Change(Ptr, Name); -
. Ptr := Ptr) <D_NextEntry;

’Unt1l Ptr = Nil;
Write('Redisplay files? ')-
Read(Ch); Hr1teLn' 4 , - =
TECh In-Ly ¥ 0. Then
Ptr := D1splay('Neu Files :', Match,
VOlume, Name, Select);

4~46

File Management Units

" End;
~ Mriteln;
. . Repeat 4 S
Write('Continue ? ');
Read(Ch); Writeln; B <
HREIL-Chi I Eint N, v A" 1
MWriteln; :
. Release(Heap Ptr);
uUntit. Ch In C'n*, *N'1; -
End. € WildChng) o

Function D Change Date
(D_NAME : String;
D NEWDATE : D DateRec;

D SELECT : D Choice) : D Result;

D Change Date changes the file date of
volumes and files whose names match the file
name argument contained in D NAME.
D Change Date accepts wild cards in its file
name argument. If a volume date is changed,
only the disk is updated. The disk must be
rebooted if the new date is to be used. To
change the internal date, which will appear
when D(ate is used in the filer, use the
date access procedures within the SYS.INFO
unit.

D Change Date accepts the following
parameters.

@ D NAME. A string which contains a valid

file name. The file name may contain
wild cards.

4-47

File Management Units

@ D NEWDATE. A record of type D DateRec
which contains the new date. ~ A year
value of 100 isn't accepted by
D Change Date in a new date.

@ D SELECT. A set of file and/or volume.
All scalar types except D Free and D Temp
apply to D Change Date. Disk free spaces
identified by the D Free scalar don't
contain file dates. Temporary status for
files is specified by a special value in
the file date field. Thus, D Free and
D Temp are ignored if they are included
in D_SELECT.

D Change Date returns a value of type
D Result. D Change Date can return all
scalar values defined in D Result except
D Exists; the values are described in the
following items.

@® D Okay. No error. D NAME was found, and
D NEWDATE was written to the directory
for the specified file or disk volume.

@ D Not Found. No such file/volume found.
No match found for D NAME. No change
made.

@ D Name Error. Illegal syntax in D NAME.
No change made.

4-48

File Management Units

@ D Off Line. Volume off-line. The volume

specified by D NAME wasn't on-line. No
change made. This error occurs only if
the volume ID in D NAME specifies a
single volume which is off-line. If the
volume name in D NAME contains wild cards
and doesn't match any on-line volumes,
D Change Date returns D Not Found.

D Other. Unknown error. No change made.
D Change Date encountered an unidentified
error which prevented successful
completion of the operation.

4-49

File Management Units

Example Program

The following program demonstrates the
of D Change Date.

Program Date Test;

Uses -
(*$UWILD.CODE*)
wild, %
(*$UDIR.INFO. CODE')
DirInfo; -~
var y 3
Result : D_Result;
€h - - : Char;
M, D, Y . : Integer;
NewDate : D_DateRec;
. Select- .1 D Choice;

_ FileName 2 String;
Prppeddﬁe.Givechoiceichoice ; Str1ng K1nd : D_Choice);
Var < 2

Ch' : Char;
Begin ; :
wr1te(' ,Cho1ce,' ? ')-

‘Read(Ch); Writeln; -
If Ch In-LC'¥', *Y'Y Then Select := Select + Kind;. ..
“End; G G1vecho1ce ¥ =

“Begin { Date Test)}
.. Select =.T1; -
Writeln('D_ChangeDate Test —');
Repeat i o
Writeln; L =
!r1te('FiLe to change.:.'); Readln(F1LeName)'3-
Writeln("Types [y/n ety
“GiveChoice('Directories’, [D) Voll);
.GiveChoice('Text Files ', LD Text);
~GiveChoice('Code Files , [D_CodeD);
GiveChoice('Data FiLes" D _Datal);
GiveChoice('SVol Files ', CD_svoll);
: leecho1ce('SVoL Files ', [p_SVoll);
Writeln('New date = ');
Write('Month [1 - 123
write('Day . [1 - 311
write('Year [0 - 993
With NewDate Do

*); Readln(M);
'); Readln(D);
‘") ; -Readln(Y);

~
e

Begin .

Month := M;

Day D;

Year := ¥;
. End; € with NewDate }
Nr1te[n'

. Result := D- Changebate(F1leName, Neubate, Select)-

4-50

use

File Management Units

Case Result Of
D_Okay : Writeln(’date changed');
D_Name_Error : Writeln(*error in file name');
b_Off Line : Writéln('volume off.Lline');
-D_Not_Found : Writeln('file not found";
D_Other : Writeln(*miscellaneous error');

End; { cases)

Writeln;

Write('Continue 2 ');

Read(Ch); Writeln;

UntitEch In EYp YN T:%
End. { Date Test }

Function D Rem Files

(D_NAME : String;
D _SELECT : D Choice) : D Result;

The D Rem Files function removes file
objects whose names match the file name
argument contained in D NAME and types match
the elements included in D SELECT. The file
name argument may contain wild cards. Disk
files are permanently deleted from their
directories. Volumes are taken off-line,
but not altered in any way; off-line disk
volumes may be brought back on-line merely
by referencing them, while off-line serial
volumes remain inaccessible until the system
is reinitialized.

D Rem Files accepts the following
parameters.

@ D NAME. A string containing the name of
the file(s) or volume(s) to be removed.

@ D SELECT. A set of file objects to be
removed. The definition of the set is as
follows:

D NameType = (D Vol, D Code, D Text,

D Data, D SVol,
D Temp, D Free);

4-51

File Management Units

D Choice = Set Of D NameType;

All scalar types except D Free apply to
D Rem Files. Disk free space can't be
removed from the directory; thus, D Free is
ignored if it is included in D SELECT.

D Rem Files returns a value of type
D Result. D Rem Files can return all scalar

values defined in D Result except D FExists;
the values have the following meanings:

@ D Okay. No error. D NAME was found. If
D Vol is included in D SELECT, and a
volume matches the file name argument in
D NAME, the volume is taken off-line. If
D Text, D Code, D Data, D SVol, or D Temp
are included in D SELECT, disk files of
those types which match D NAME are
deleted from their directories.

@ D Not Found. No such file/volume found.
No match found for D _NAME. No change
made.

@ D Name Error. Illegal file name syntax
in D NAME. No change made.

@ D Off Line. Volume off-line. The volume
spec1f1ed by D NAME wasn't on-line. No
change made. This error occurs only if
the volume ID in D NAME specifies a
single volume which is off-line. If the
volume ID in D NAME contains wild cards,
but doesn't match any on-line volume,
D Rem Files returns D Not Found.

4-52

File Management Units

@ D Other. Unknown error. No change made.
D Rem Files encountered an unidentified
error which prevented successful
completion of the operation.

Example Program

Program Rem_Test;
Uses
(*SUWILD.CODE*)
wild, :
(*$UDIR.INFO.CODE*)
pirinfo;

var
Result : D_Result;
Select : D_Choice;
Ch : Char;
Remfile : String;

Procedure GiveChoice(Choice : String; Kind : D_Choice);
var
Ch : Char;

Begin

Write(' t.Choice," 2 %)

Read(Ch); Writeln;

If Ch In C'y', 'Y'] Then Select := Select + Kind;
End; { GiveChoice }

Begin { Rem_Test }
Select := [J;
Writeln('D_Rem Files Test —');
Repeat
Write('File(s) to remove : ");
Readln(Remfile); "
Writeln(*Types L y/n 1 : *);
GiveChoice('Directories', [D Voll);
GiveChoice('Temp Files ', [D_Templ);
GiveChoice('Text Files ', [D_Textl);
GiveChoice('Code Files ', [D Codel);
GiveChoice('Data Files ', [D_bDatal);
GiveChoice('svol Files ', [D_SVoll);
Result := D_Rem Files(Remfile, Select);"
Case Result Of
D_Okay : Writeln('files removed');
D_Name Error : Writeln('error in file name');
D_Off Line : Writeln('volume off Line');
D_Not Found : Writeln(*file not found");
D_Other : Writeln('miscellaneous error’);
End; { cases }
MWriteln;
Write("Continue ? ");
Read(Ch); Writeln;
uUntil Ch In ['n',°'N'];
End. { Rem Test }

4-53

File Management Units

Procedure D Lock

D Lock grants exclusive directory access
rights to the task that executes it;
however, a task may have to wait until
another task releases the directory lock
before it can continue execution past its
call to D ILock.

NOTE: D lock calls should always be matched
with D Release calls to prevent system
deadlocks.

The Dir Info routines D Lock and D Release
are provided for use in multi-tasking
environments. When used properly, they
ensure mutually exclusive access to
directory information.

Procedure D Release

D Release releases exclusive access rights
to the directory. Tasks already waiting for
directory access are automatically awakened
when the directory becomes available by a
call to D Release.

4-54

File Management Units

Example Program

The following program demonstrates the
of D Lock and D Release.

Program Locktest;
Uses
(*SUWILD.CODE*)
wild,
(*SUDIR INFO CODE*)
pirInfo; -

Const | 1
‘Stack_Size = 2000;

var
~ Pid : Processid;
old, {

New : String;

Date : D_DateRec;
M, D, Y : Integer;
Ch : Char;"

Process changQ_And_check(oid, New: String; Date : D_patéRec);
Var - e iR . i 3
i Result : Db ResuLt;

Begin € Change And_(Check P
b Lock; . {k beginning of crwtlcaL section }
Result := D_ChangeDate(Old, Date, [p) Vol..D SVoL])"
If Result = D, _Okay Then) 3
- Result -:= D ChangeName(OLd, Neu, ‘True);
D_Release; - { end of critical section >

end; { change And_Check ¥

Begin { LockTest }

Repeat B
rite('old f1le name: '); 3 -
eadln(OLd);
rite('New file name: ');
eadln(New) ; :
riteln('New date:');
rite(’ Month: ');
Readln(M);

: Write(" pay: 'J);

"~ Readln(p); =l
Write(' Year: ');
Readln(Y) ;- ¢
With Date Do

4-55

use

r1ie Management Units

4-56

File Management Units

WILD CARDS (WILD)

The unit WILD provides a wild card convention
for pattern matching of string variables. Wild
cards are special character sequences in a
character string; they are named wild cards
because of their ability to match whole classes
of character sequences rather than a single
character sequence. For instance, the string
"a=" matches all character strings starting with
the letter "a" because (=) is defined as a
wild card that matches any character sequence.

Wild cards are useful in pattern matching
situations where many character strings are to
be matched with a single request. The p-System
filer uses a set of wild card facilities in its
directory operations. Examples are given in the
Operating System Reference Manual that describes
the filer operation. Because of the extra
functions provided by this UNIT, there isn't a
direct correspondence between the filer and this
UNIT. Where there are differences in the use of
characters, these are described.

4-57

File Management Units

Special Wild Card Characters

The following characters are defined as
special characters:

question mark
equal sign
braces

comma ,
hyphen -
tilde -
percent sign %

N

and >

Special characters may only be used as parts
of wild cards. However, a literal occurrence
of a special character can be represented by a
two character sequence consisting of a percent
sign followed by the special character. A
percent sign indicates that the following
character 1is to appear 1literally 1in the
character string; for instance, "xx%=yy" is
treated as the 1literal character string
"xx=yy" rather than a wild card string.

Examples of percent sign in wild cards:

"a b%?def" matches "ab?def"
"abla-z, #=}de%%f" matches "ab=de%f"
"ab%- def" matches "ab-def"

4-58

File Management Units

Question Mark Wild Card

A question mark matches any single

character. In the filer, the (?) is
treated as an interactive query of an (=)
wild card. This is one of the major

differences in use of characters between
this UNIT and the filer.

Examples of (?) wild card:

Pattern: "ab?def"

Matches: "abbdef"
"abrdef"

Nonmatch: "abdef"
"abjkdef"
!labef "

Equal Sign Wild Card

An equal sign matches any sequence of
characters, including the empty sequence.
This is the same as the filer except that

more than one (=) can appear in a wild
card string.

4-59

File Management Units

Examples of (=) wild card:

Pattern: "ab=def="

Matches: "abcdefg"
"abdef"
"abccedef"

Nonmatches: "abcef"

Subrange Wild Card

The subrange wild card matches a single
character from the character set specified
in the subrange. The special characters,
comma, hyphen, tilde, and braces, are used
to construct subrange wild cards.

A subrange wild card consists of a character
set delimited by braces. A character set
consists of a 1list of character-items
separated by commas.

A character-item is either a character or a
character range (two characters separated by
a hyphen). A character range implicitly
specifies all characters lying between the
two characters. (Consult an ASCII table to
determine the ordering of characters.)

4-60

File Management Units

Character-items preceded by tildes are
called negated-items and are specifically
excluded from the character set. A
character range proceeded by a tilde is
entirely excluded from the character set.
The 1list of character items is evaluated
left-to-right. Characters specified by
non-negated items are included into the set;
characters specified by negated items are
excluded from the set. Thus, a character
matches the subrange wild card if it matches
one of the non-negated items, but doesn't
match any of the negated choices. For
example, the subrange "{a-z,"r}" represents
the set of characters from "a" to "z,"
excluding "r."

NOTE: Blank characters within subrange wild
cards are ignored. Wild card characters can
be specified in character sets with the
percent sign notation described in the
preceding paragraphs.

Examples of subrange wild cards:
{a,b,c}

{a—drj ,W—Z}
{a-z,73,7x-y)

4-61

File Management Units

Syntax for subrange wild card:

wild-card = "{" item-list "}"
item-list = item < "," item >

item = [7] char-item
char-item = char / range

range = char "-" char

char = an ASCII character

Examples of subrange wild card:

Pattern: "ab{a-r, 7j, “kl}def"
Matches: "abbdef"

"abrdef"
Nonmatches: "abjdef"

"abkdef"

"abzdef"

4-62

File Management Units

Function D Wild Match
(WILD, COMP: Strlng,
Var PPTR : D PatRecP;
PINFO : Boolean) : Boolean;

D Wild Match serves as a general purpose
pattern matcher for string variables using
the wild card conventions described above.
The two main parameters are a wild card
string, WILD, and a literal string, COMP.
D Wild Match determlnes whether the literal
string matches the wild card string. If the
strings match, D Wild Match returns true;
otherwise, it refurns false. If PINFO is
set to true, D Wild Match returns
information (accessed through PPTR) that
describes how the strings were matched.

D Wild Match Parameters

D

) Wild Match accepts the following parameters:

WILD. A string which may contain wild
cards.

COMP. A literal text string.
PINFO. A Boolean. If set to TRUE, PINFO

requests that pattern matching information
be returned.

4-63

File Management Units

@ PPTR. Pointer of type D PatRecP.
Depending on the value passed in PINFO,
D Wild Match either sets PPTR to NIL or
points it at a linked 1list of records
containing pattern matching information.

D Wild Match Pattern Matching Info

If PINFO is set to TRUE, D Wild Match returns
pattern matching information in PPTR. PPTR is
a pointer (of type D PatRecP) to a linked list
of records which contain the starting
positions and lengths of corresponding
character patterns in WILD and COMP.

D Pat RecP is defined as follows:

D PatRecP = “D PatRec;

D PatRec = Record
CompPos,
Complen,
WildPos,

Wildlen: Integer;
Next:D PatRecP;
End; { D PatRec }

CompPos and WildPos are the starting positions
of corresponding character patterns in COMP
and WILD, respectively. CompLen and Wildlen
are the pattern lengths. Next points to the
next pattern record in the list; it is set to
NIL in the last pattern record. The patterns
occur in the list in the order in which they
were matched in the strings.

4-64

File Management Units

If the strings don't match, or the list wasn't
requested (that is, PINFO is set to false),
PPTR is set to NIL.

Example of pattern record list:

WILD contains: '=ab{a-m}=f?'
COMP contains: 'abcdefg'’

If PINFO is set to true, pattern record list
returned is:

1. WildPos 1, Wildlen = 1

i

CompPos 1, Complen = O
('='" matches the empty string)

2. WildPos = 2, Wildlen = 2
CompPos = 1, Complen = 2
('ab' matches 'ab')

3. WildPos = 4, Wildlen = 5
CompPos = 3, Complen = 1
('{a-m}' matches 'c')

4., WildPos = 9, Wildlen = 1
CompPos = 4, Complen = 2

('=' matches 'de')

5. WildPos = 10, Wildlen = 1
CompPos = 6, Complen = 1
('f' matches 'f')

6. WildPos = 11, Wildlen =1

CompPos = 7, Complen = 1
('?'" matches 'g')

4-65

File Management Units

NOTE: When the (=) wild card in WILD
matches an empty string in COMP, Complen is
set to 0 and CompPos is set to the position of
the next pattern in COMP (that is, the
position where a nonempty pattern would have
occurred). Be sure to check the validity of
CompPos indices before using them to reference
characters in COMP; otherwise, range errors
may occur.

4-66

File Management Units

Example Program

The following program is an example of a
string comparison routine that uses
D Wild Match. The program reads two strings
and prints the result of the comparison; if
requested, it also prints information
describing how the patterns matched.

Program Wild Test;

Uses (*SUWILD.CODE*)
wild;

Var
W, C : String;
Ch : Char;

PatPtr : D_PatRecP;
Want_Patterns : Boolean;

Procedure Print_Patterns(PatPtr : D_PatRecP;
C, W : String);
Var

Count : Integer;

Begin { Print_Patterns } !
Writeln('type <cr> for patterns');
Readln; Writeln;

Count := 1;

Repeat
Writeln('Pattern ', Count, ' :');
With PatPtr i Do
Begin
Writeln(' Comp : ', C);
1f CompLen <> 0 Then Write(' ':(CompPos + 9));
1f ComplLen > 1 Then Write(' ':(CompLen =.1));
Writeln;
Writeln(* Wild : ', W);
Write(' ':(WildPos + 9)); i
If WildLen > 1 Then Write(' ‘:(WildLen = 1));
Writeln; Writeln;
End;
PatPtr := PatPtr .Next;

Count := Count + 1;
Until PatPtr = Nil;
End; { Print_Patterns X

Begin { Wild_Test }
Repeat
Writeln('—wWildCard Check—");
Write('Wild Card String ALY N
Readln (W) ;
Write('Comparison String : ');

4-67

File Management Units

SYSTEM INFORMATION

Unit SYS.INFO is an easy way to access some of
the system global information. SYS.INFO uses
KERNEL.CODE in its implementation section.
Although it 1is possible to access KERNEL.CODE
directly, there are many variables that are
normally not needed. If you require a different
set, then another unit similar to this one can

be easily constructed for the particular
situation.

In order to distinguish the variables defined by
this wunit, they have been prefixed with SI.
Here are the SYS.INFO routines:

Readln(c)

Write('Do you want pattern matching information. ? [yln] =
Read{Ch);

Want Patterns := Ch In ['y','Y'];

writetn; Writeln; -

If D Wild Match(w, c, PatPtr, Want_| Patterns) Then
writeln('A Match®) :

Else Writeln('No Match');

1f wWant_Patterns And (PatPtr <> Nil) Then
Print_| " Patterns(PatPtr, C, W);

Write('Continue 2 Cy/nd '),

Read(Ch);

]riteln;.urrteln; .

Until Ch In L'n', 'N'3;

End. { Wild Test 2

4-68

File Management Units

Work Code File Name:

Procedure SI_Code Vid
(Var SI Vol : String);

Procedure SI Code Tid
(Var SI Title : String);

The preceding procedures return the volume name

(SI Vol) and the file name (SI_Title) of the
system work code file.

Work Text File Name:

Procedure SI_Text Vid
(Var SI Vol : String);

Procedure SI_Text Tid
(Var SI_Title : String);

The preceding procedures return the volume name

(SI Vol) and the file name (SI Title) of the
system work text file.

System Volume:

Function SI_Sys Unit : Integer;
The SI Sys Unit function returns an integer

function result. The device number of the drive
containing the system volume is returned.

4-69

File Management Units

Procedure SI_Get_Sys Vol
(Var SI Vol : String);

The preceding procedure returns the volume name
(SI_Vol) of the current system volume.

Prefixed Volume Name:

Procedure SI_Get Pref Vol
(Var SI Vol : String);

Procedure SI Set Pref Vol
(SI_Vol : String);

The preceding procedures allow the current
prefix volume to be read and set.

4-70

File Management Units

System Date:

Procedure SI_Get Date
(Var SI Date : SI Date Rec);

Procedure SI_Set Date
(Var SI Date : SI Date Rec);

The SI Get Date and SI Set Date procedures
access and modify the system date. The date is
passed as a record of type SI Date Rec.
Changing the date won't change the date on the
system disk. It will only change the date
internally in the operating system. To change
the date on the disk, use function D Change Date
within the DIR.INFO unit.

SI Date Rec = Packed Record
Month : 0..12;

Day : 0..31;
Year : 0..99;
End;

This record is used in the operating system to
store dates. It is a packed record and only
requires 16 bits. All date variables use this
format.

4-71

File Management Units

Example Program

4-72

File Management Units

4-73

File Management Units

FILE INFORMATION

This wunit provides an easy way to access
information in the file information block (fib).
It uses the system globals from KERNEL.CODE.
Although it is possible for you to access the
global data, it is easier to use this unit. In
order to distinguish the variable names in this
unit, they have all been prefixed with an 'F'.

Type F File Type = file;

Because of a Pascal language restriction, it is
necessary to declare files of type (f file type)
that are to be passed on as parameters to these
procedures and functions.

Function F _Open
(var fid: F_File Type):boolean;

This function should be called before any of the
following are used. This enables a check to be
made on the status of a file. The function
returns true if the file is open and false if
isn't open. The following functions won't give
the correct values if the file isn't open.

4-74

File Management Units

Function F lLength
(Var Fid : F File Type) : Integer;

Returns the length (in blocks) of the file
attached to the Fid identifier. If the file
isn't opened, the result is returned as =zero.
This only has meaning for files on storage
volumes as the value returned is the number of
blocks allocated to the file.

Function F Unit_ Number
(Var Fid : F File Type) : integer;

Returns the device number of the storage volume
containing the file attached to the Fid
identifier. If there is no file opened to the
Fid, the function result is zero.

Procedure F_Volume

(Var Fid : F File Type;
Var File Volume : String);

Returns the name of the volume containing the
file attached to the Fid identifier. If the
external file lacks a defined volume name,
F Volume returns a volume ID constructed from a
device number (such as #4:). If there is no
file opened to the Fid, the File Volume is set
to a null string.

4-75

File Management Units

Procedure F_File Title
(Var Fid : F File Type;
Var File Title : String);

Returns the title (with suffix) of the file
attached to the Fid identifier. If there is no
file opened to Fid, or if the external file is a
volume, then the File Title is set to a null
string. o

Function F_Start
(Var Fid : F File Type) : integer;

Returns the block number of the first block of
the file attached to the Fid identifier. This
only has meaning for files on storage volumes.
If there is no file opened to Fid, the function
result is returned is zero.

Function F_is Blocked
(Var Fid: F _File Type) : Boolean;

Returns a boolean that is TRUE if the file
attached to the Fid identifier is located on a
storage volume (or block-structured device). If
there is no file opened for the Fid or if the
device 1isn't a storage volume, the function
result is set to false.

4-76

File Management Units

Procedure F Date

(Var Fid : F File Type;
Var File Date : F Date Rec);

Returns a record indicating the last access date
for the file attached to the Fid identifier. If
there is no file opened to Fid, the File Date is

unchanged. The definition of F Date Rec type
is:

F Date Rec = Packed Record
Month : 0..12;

Day : 0..31;
Year : 0..100;
End;

4-77

CHAPTER 5

DEBUGGING

AND ANALYSTIS

Debugging and Analysis

INTRODUCTION

This chapter describes the debugger and the
performance monitor. The debugger is a tool for
correcting errors in programs that you develop.
The performance monitor is a mechanism that may
assist you in gathering program (or operating
system) performance information.

DEBUGGER

The symbolic debugger is a tool for locating and
correcting errors in compiled programs. You can
call it from the Command menu. It can also be
selected while a program is running (when a
break point is encountered). Using the symbolic
debugger, you may display and alter memory,
single-step p-code, and display and traverse
markstack chains.

To use the debugger effectively, you must be
familiar with the p-machine architecture and
understand the p-code operators, stack usage,
variable and parameter allocation, and so on.
These topics are discussed in the Internal
Architecture Reference Manual.

5-3

Debugging and Analysis

You may have to use the Library utility to place
the debugger into SYSTEM.PASCAL. If this is the
case with your p-System package, you should
consult the "Configuration Notes Appendix" to
the Operating System Reference Manual.

Using the Debugger

There are no menus explaining the debugger
commands because they would detract from any
information displayed by the program being
debugged. However, when a command is entered,
the system displays several short prompts that
may ask for information.

Many of the debugger commands require two
characters (such as 'LP' for L(ist P(code, or
'LR' for L(ist R(egister). To exit the
program after entering the first character,
press <space> to recall the main mode of the
debugger.

A current compiled listing of the program is a
helpful debugging tool. It helps you
determine p-code offsets and similar
information.

The debugger is a low-level tool, and as such,
you must use it with caution. If you use the
debugger incorrectly, the p-System can fail.

Debugging and Analysis

Entering and Bxiting

Press 'D' to call the debugger from the
Command menu. If you enter the debugger in
a fresh state, the system displays the
following prompts.

. " DEBUG 'Iiv,e_r"'sion #3 0,

A fresh state means that the debugger wasn't
previously active, and no break points are
currently enabled. If you enter the
debugger in a nonfresh state, only the left
parenthesis "(" appears.

Exit the debugger by pressing 'Q' to select

Q(uit, 'R' to select R(esume, or 'S' to
select S(tep. The Q(uit option disables the
debugger. If the debugger is selected

again, it returns in a fresh state. The
R(esume option won't disable the debugger
and execution continues from where it left
off. The debugger is still active; and if
it is called again, it is in a nonfresh
state. The S(tep option executes a single
p-code and automatically again calls the
debugger in a nonfresh state.

If a program is running under the debugger's
R(esume command, it may force a return to
the debugger by calling the HALT intrinsic.
In fact, any run-time error causes a return
to the debugger, if the debugger is active
while the program is running.

Debugging and Analysis

You may memlock or memswap the debugger (see
the descriptions of those intrinsics) by
using the M(emory command at the outer
level. 'ML' memlocks and 'MS' memswaps the
debugger.

Using Break Points

To enter the debugger while a program is
running, but not alter the program's code,
use the debugger to set break points. Press
'B' to call the B(reakpoint option and then
use either the S(et, R(emove, or L(ist
command. To set a break point, press S(et
after pressing B(reakpoint. There are, at
most, five break points numbered O through
4. The system displays four prompts asking
for information. The first prompt is:

Set Break #?

Enter a digit in the range O through 4 and
press <space>. The next prompt is:

Segname?

Enter the name of the desired segment and
press <space>. The next prompt is:

Procname or #?

5-6

Debugging and Analysis

Enter the number of the desired procedure
and press <space>. The final prompt is:

offset #?

Enter the desired offset within the
procedure and press <space>. The system
sets a break point; and if that segment,
procedure, and offset are encountered while
resuming execution, the debugger is
automatically called again.

Use a compiled 1listing of the program to
determine the location of the break point.
If no compiled listing is available, use the
text file viewing facility.

To remove a break point, press B(reakpoint;
then press R(emove. The system displays the
following prompt:

Remove break #?

To remove a break point, enter its number;
then press <space>.

To 1list the current break points, press
B(reakpoint and then press L(ist.

Debugging and Analysis

Viewing and Altering Variables

The V(ar command allows the system to
display data segment memory. It is another
two-character command that must be followed
by G(1lobal, L(ocal, I(ntermediate,
E(xtended, or P(rocedure. If G(lobal or
L(ocal is selected, the system displays the
following prompt:

offset #2

Enter the desired offset into the data
segment.

If I(ntermediate is selected, the system
displays the following prompt:

Delta Lex Level? -

Enter the appropriate delta lex level for
the desired intermediate variable.

If E(xfended is Seiected, the iSyétem
displays the following prompt:

Seg #7 Offset #?

Enter the appropriate segment number and
offset number for the desired extended
variable.

5-8

Debugging and Analysis

If P(rocedure is selected, the system may
display an offset within a specified
procedure. The following prompts are
displayed in sequence.

Segment name? - Procname or #? . Varname or Offset#?

When any of these options are used, the
system displays a prompt similar to the
following line:

C 1) S=INIT P#1 VO#1 2C1A: 0B 05 53 43 41 4C 43 61 — SCALCa

This example 1is a portion of the Ilocal
activation record for segment INIT,
procedure 1, variable offset 1, at absolute
hexadecimal location 2Cl1A. Following this,
eight bytes are displayed, first in
HEXADECIMAL. and then in ASCII (a dash "-"
indicates that the character isn't a
printable ASCII character).

To view surrounding portions of memory,
press V(ar. After a line has been displayed
by the V(ar command, a '+' or '-' may be
entered. This displays the succeeding or
preceding eight bytes of memory.

Debugging and Analysis

The eight bytes that are currently displayed
may be altered. If a '/' is pressed, then
the line may be altered in hexadecimal mode.
If a "\' is pressed, then the line may be
altered in ASCII mode. When altering in
hexadecimal mode, any characters that are to
be left unchanged may be skipped by pressing
{space>. In the ASCII mode, any characters
to be left unchanged may be skipped by
pressing <return>.

It 1is possible to change the frame of
reference from which the global, local, and
intermediate variables are viewed. This can
be done by using the C(hain command. Press
'C'. The U(p, D(own and L(ist options are
available. If 'L' is pressed, all of the
currently existing mark stack control words
are displayed, with the most recently
created one first. An entry in the 1list
resembles the following line.

(ms) S=HEAPOPS P#3 0#23 -msstat=347C msdyn=FOAQ msipc=01DA msenv=FEE8

This corresponds to a mark stack control
word with the indicated static 1link
(msstat), dynamic link (msdyn), interpreter
program counter (msipc), and erec pointer
(msenv). The indicated segment (HEAPOPS),
procedure (#3), and offset (#23) are the
return point for the procedure call which
created the MSCW.

5-10

Debugging and Analysis

If the U(p or D(own options are used, the
frame of reference moves up or down one link
and the frame of reference for variable
listings (using the 'V' command) changes
accordingly.

Viewing Text Files

To view a text file from the debugger, press
'F' to call the F(ile command. The system
displays the following prompt:

Filename? First Lline #? Last line #?

Enter the name of the text file to be viewed
followed by <space>. The .TEXT portion of
the file name is optional. Then enter the
first and last line numbers that delimit the
portion of text that you wish to view. This
command lists as many lines as possible in
the window from first line to last line of
the indicated file.

The F(ile command is useful for debugging
(especially using symbolic debugging) when a
hard copy of the relevant compiled listing
isn't available. Using this command, you
can view source files on disk and disk files
containing compiled listings without leaving
the debugger.

5-11

Debugging and Analysis

Displaying Useful Information

Whenever control is returned to the debugger
(that is, after a single-step operation, or
when a break point 1is encountered), it
displays various information if it is
desired. This information may include
p-machine registers, the current p-code
operator, the information in the current
markstack, or any specified memory location.
In order to select what is displayed, the
E(nable mode should be used. After entering
'E', the following options are available at
the command level, R(egister, P(code,
M(arkstack, A(ddress, and E(very (all of the
preceding). Any or all of these options may
be enabled at the same time.

If R(egister is enabled, a line is displayed
after each single step. The following line
is an example of that display.

(r;g), mp=F082 sp=F0'9CVVgrec=FEEs'seg=9782 ipe=01C3 tib=0493 -rfd_yq=2€8¢]

If P(code is enabled, a line such as the
following is displayed after each step:

(cd) S=HEAPOPS PH3 O#23 LLA 1

If M(arkstack is enabled, a 1line like the
following is displayed after each step:

" (ms) S=HEAPOPS P#3 O#23 msstat=347C msdyn=FOAD msipc=01DA msenv=FEE8

5-12

Debugging and Analysis

If A(ddress is enabled, the system generates
a display like the following line.

(a) S=HEAPOPS P#3 O#23 VZC‘IVA::A 0B 05 53 43 41 4C 43 61 — SCALCa

To initialize this address to a given value,
use A(ddress mode at the outer level. Press
A(ddress and the system displays the
following prompt.

Address ? :

Enter the absolute address in hexadecimal.
The system displays eight bytes starting at
that address. Also, that address is now
displayed if the E(nable A(ddress option is
on.

Enabling E(very causes all of the above
options to be enabled.

The D(isable mode disables any of the
options Jjust described. The L(ist mode
lists any of the above options.

5-13

Debugging and Analysis

Disassembling P-Code

At the debugger's outer 1level, there is a
p—-code option that displays the p-code
mnemonics for selected portions of code.
This option asks for:

" Segname? :
Procname or-#? ¢ %
Start ‘0ffset #? and End Offset #?

The indicated portion of code is then
disassembled. This may be useful during
single-step mode if you wish to look ahead
in the p-code stream. This mode may be
exited before it reaches the ending offset
by pressing <break>; control returns to the
debugger.

Performance Monitor Interaction

The 'I' command calls the PM Interactive
procedure within the operating system if the
performance monitor is enabled. You may, in
this way, gain access to various sorts of
program performance information while using
the Debugger. For more information, see the
"Performance Monitor" section later in this
chapter.

5-14

Debugging and Analysis

The 'Z' Command

The 'Z' command displays the segment
reference list for each segment which is
currently associated (within the operating
system as well as within the program being
executed). This segment reference list is
extracted from the environment vector (which
is described in the Internal Architecture
Reference Manual).

Segments within the currently executing
program, and within the operating system,
may contain external references; that is,
they may call routines from another segment
or access variables from another segment.
For each segment which has external
references, a 1list of the referenced
segments is given by the 'Z' command. The
names of the referenced segments as well as
the associated segment numbers are given.
(When two or more segments reference a
particular segment, the number associated
with the referenced segment may vary among
them. This segment number is used in the
p-code operators which call external
routines and access external variables.)

5-15

Debugging and Analysis

For example, if you use the 'Z' command when
the Debugger is called from the Command
menu, the segment reference list for each
unit within the operating system is
displayed. Here is a partial listing:

the sib s GOTOXY -
1 KERNEL s
2 GOTOXY
3 SCREENOP

the sib is DEBUGGER
KERNEL
DEBUGGER
PDEBUGIN
EXTRALEX-
EXTRAIO .-
GOTOXY
FILEOPS
STRINGOP
PASCALIO
EXTRAHEA

a—n' y
S OVENOVANS

" the sib is PDEBUGIN
1 KERNEL :
2 PDEBUSIN

the sib is SCREENOP
1 KERNEL A
SCREENOP
SEGSCINI
STRINGOP .
SEGSCPRO
PASCALIO

EXTRAIO

SEGSCCHE -
GOTOXY

CONOUV S WN

The '"sib" is the Segment Information Block
(which 1is described in the Internal
Architecture Reference Manual). After
"the sib is,” the name of an associated
segment is given. Below this name are the
segments it references along with the
associated segment numbers.

5-16

Debugging and Analysis

Example of Debugger Usage

Suppose the following program is to be
debugged:

Pasca(Compiler IV.0

10 0:d 1 {SL LIST.TEXT)

22 1:d 1 PROGRAM NOT_ DEBUGGED;

3.2 1:d 1. VAR I,J,K:INTEGER; y

421:d 4 B1,B2:BOOLEAN; ~

5 2 1:0 0 BEGIN

62 1:10 “1:=1;

T2 =3 J:=1; .

82116 IF K <> 1 THEN WRITELN ('Whats wrong?');
92 :00 END. :

End of Compilation.

First we enter the debugger and set a break
point at the beginning of the IF statement:

(BS) Set break #? O Segname? NOTDEBUG Procname or #? 1 Offset #? 6
(EP) s
(R)

After setting the break point we enable
p-code (EP) and resume (R). Now we execute
the program above, and when it reaches
offset 6, the debugger is entered. We
single-step twice:

Hit break #0 at S=NOTDEBUG P#1 0#6
(cd) S=NOTDEBUG P#1 O#6 SLDO1
(cd) ~ S=NOTDEBUG P#1 O#7 -SLDC1
(cd) S=NOTDEBUG P#1 O#8 NEQUI

We see that our first single-step did a
short load global 1.

5-17

Debugging and Analysis

NOTE: This put 'K' on the stack. 'K' is
NOT global 3; 'I' is global 3, 'J' is global
2, and 'K' is global 1. Every string of
variables (such as 'I', 'J', 'K' in a
declaration) is allocated in reverse order.
Boolean Bl, which follows, is at offset 5,
and B2 is at offset 4. Parameters, on the
other hand, ARE allocated in the order in
which they appear.

The second single-step did a short load
constant 1 onto the stack. Now we are about
to do an integer comparison (<>). But
this 1is where our error shows up, SO we
decide to 1look at what is on the stack
before doing this comparison:

(LR)

(rg) mp=EB62 sp=EB82 erec= ...

(A) Address? EB82 X :

(a) EB82: 01 00 C5 14 ...

We list the registers and then look at the
memory address to which register sp points.
We discover a 1 on top of the stack (01 00:
this 1is a 1least-significant-byte-first
machine) followed by a word of what appears
to be garbage. This leads us to suspect
that 'K' wasn't initialized. Looking over
the listing, we quickly realize that this is
the case.

5-18

Debugging and Analysis

Symbolic Debugging

The symbolic debugging feature allows
specification of wvariables by name, rather
than p-code offset. Also, break points and
portions of code to be disassembled may be
indicated by procedure name and line number,
rather than procedure number and p-code
offset.

Having a current compiled listing of the code
in question is still essential for serious
debugging efforts.

To use symbolic debugging, it is necessary
that the code being debugged is compiled with
the $D+ option. The $D+ option, which
defaults to 8D-, instructs the compiler to
output symbolic debugger information for those
portions of a program that are compiled with
$D+ turned on.

Once a program is debugged, it should be
recompiled without symbolic debugger
information, because this information
increases the size of the code file. Symbolic
debugger information for a particular code
segment 1is stored in another code segment.
This other segment is given the same name as
the code segment for which symbolic debugger
information is generated. However, the name
is in lowercase letters. (Executable code
segments are always given names consisting of
uppercase letters.)

5-19

Debugging and Analysis

Using symbolic debugging, break points may be
specified by procedure name and line number
for all statements covered by the $D+ option.
The B(reakpoint command requests:

. Procname or #2?

Enter the first eight characters of the
procedure name. The next line displayed is:

_ First# Last¥ - Line#?

The underlines actually are values that define
the range of line numbers available to you
within the specified procedure. (These line
numbers appear on compiled listings.) Enter
the desired line number for the break point.

Variables within a given routine may be
specified by name (rather than data segment
offset number) if at 1least one statement
within that routine is compiled with $D+. The
V(ar command allows specification of G(lobal,
L(ocal, I(ntermediate, or P(rocedure variables
in this manner. E(xtended variables aren't
allowed to be specified symbolically. The
V(ar command prompts:

Varname or offset #2.

5-20

Debugging and Analysis

You may enter the first eight characters of
the declared identifier. A line similar to
the following appears:

(1) S=INIT P=FILLTABL V=TABLE1 2C1A: OB 05 53 43 41 4C 43 61 — SCALCa -

The segment 1is INIT; the procedure is
FILL TABLES; and the variable is TABLEl.

Similarly, the code to be disassembled by the
p-code command can be specified symbolically
for all portions of code covered by the 3D+
option. This command requests:

- Procname or #2

Enter the first eight characters of the
procedure name. The system displays the
following prompt: End Line#?

-- First # Last #__ Start Line#? -

The wunderlines are actually the boundaries
that are available to you. You should enter
the desired starting and ending line numbers.
The specified code is then disassembled.

5-21

Debugging and Analysis

Symbolic Debugging Example

To use symbolic debugging, some part of a
Pascal compilation unit must be compiled
with the {$D+} compile-time directive.
After this code has been generated, it is
possible to reference variables and
procedures by name rather than offset. The
following example is a small Pascal program
that has been compiled with the 'D' option.

Pascal Compiler IV.1 c5s~4 3/ 4/82 - Page 1
i) 0:d 1 {$p+}
26752 1:d 1.. program example;
B2 1:d 1 var a,b,c:integer;
Y22 t:d 4 :
5. -7 1:d 4 procedure set c if d;
(TR i " T o) 1 var d:boolean;
T o240 <20 0 begin
By 2:1 0 . .d:i=adb;
Bl P | 5 if d then
10002 2 8 c:=a*b;
11 2 40 =20 end;
e 120+ -0
13 2 1:0- 0 begin
14 2 1:1 0 a:=0;
15, 12 g Jid) 3 b:=5;
i - PR R i] set_c_if d;
AR :0 o] end.

End of Compilation.

5-22

Debugging and Analysis

The following listing is an example of a
debug session.

- Debug [x151 . %
(BS) Segname=EXAMPLE Procname or # = SETCIFD
symbolic seg not in mem Line#? 8)
(R - i g

Hit break#0 at S=EXAMPLE P=SETCIFD L#8

(BS) Segname=EXAMPLE Procname or # = SETCIFD
: First#8 Last#10 Line#? 9

(R) i &

Hit break#1 at S=EXAMPLE P=SETCIFD: L#9

(VL) - Varname ‘or -offset#2? b~ - = = ;
(L") S=EXAMPLE P=SETCIFD V=D E7B2 : 0000 9448 BEE7 190C-H-
@) , ’

The first time the debugger is entered, the
program example isn't in memory and hence
the symbolic segment isn't in memory.
However, a break point can still be set
symbolically providing you know on which
line number to stop. For the second break
point, the symbolic segment is in memory;
because of this, its first and last line
numbers are given.

Notice the variable 'D' was accessed
symbolically, and 1its contents are
displayed.

If you try to access symbolically when the
actual code segment is in memory and its
symbolic segment counterpart isn't present,
the system displays the error message
'symbolic seg not in mem'. Use the 'Z'
command in the symbolic debugger to find out
if symbolic information is available for a
particular segment.

5-23

Debugging and Analysis

The 'Z' command (as described above)
displays segment reference lists. For
example, the following is a partial list for
a program called EXAMPLE. The lowercase
name 'example' is the segment produced by
the compiler which contains the symbolic
debugging information for 'EXAMPLE'. The
existence of ‘'example' indicates that
symbolic debugging information is available
for at 1least one procedure 1in segment
'EXAMPLE".

the sib is EXAMPLE
1 KERNEL

2 EXAMPLE

3 example

5-24

Debugging and Analysis

Summary of the Commands

A(ddress

B(reakpoint

S(et

R(emove

L(ist

C(hain

U(p

D(own

L(ist
F(ile

E(nable

D(isable

I(nteract

Displays a given address.

Segment, procedure and offset
must be specified.

Allows a break point
(0 through 4) to be set.

Allows a break point to be
removed.

Lists current break points.

Changes frame of reference for
V(ariable command.

Chains up mark stack links.
Chains down mark stack links.
Lists current mark stacks.
Allows viewing of text files.

Enables the following to be
displayed.

Disables the following from
from being displayed.

Interacts with the performance
monitor.

5-25

Debugging and Analysis

L(ist

R(egister

P(code
M(arkstack
A(ddress

E(very

ILists the following:

The registers: mp, sp, erec,
seg, ipc, tib, rdyqg.

Current p-code mnemonic.
Mark stack display.
A given address.

All of the above.

I(nteractive Interacts with the performance

M(emory
L{ock
S(wap

P(code

Q(uit

R(esume

S(tep

monitor.

Memlocks the debugger.
Memswaps the debugger.

Dissassembles a given
procedure.

Quits the debugger, 'fresh'
state if re-entered.

Exits debugger, debugger
remains active, 'nonfresh'.

Single steps p-code and returns
to debugger.

5-26

V(ariable
G(lobal
L(ocal
I(nter

P(roc

E(xtended

Z(seg list

Debugging and Analysis

Displays global memory.
Displays local memory.
Displays intermediate memory.

Displays data segement of given
procedure.

Displays variables in another
segment.

Displays segment lists.

5-27

Debugging and Analysis

PERFORMANCE MONITOR

You can gain access to performance information
by writing a unit called PERFOPS and including
it in the operating system. This performance
information can help you analyze application
programs or the p-System itself. In the future,
a full implementation of PERFOPS will be
provided. Currently, however, only the hooks
for a performance monitor are available. You
should be aware that a sophisticated
understanding of the p-System's internal
architecture is required in order to write a
useful performance monitor.

The p-System expects the following interface for
PERFOPS:

: JUNIT PERFOPS:

INTERFACE -
USES KERNEL; ;
PROCEDURE PM_Fault; :
“PROCEDURE PM.Dump_Seg (SegTobump : SIB-P);
PROCEDURE PM_Prog_Begin; -
PROCEDURE PM_Prog End; = = = ’
PROCEDURE PM Start_Stop (Start : BOOLEAN) ;

" . PROCEDURE PM_ Interactive;

IMPLEMENTATION

5-28

Debugging and Analysis

With the exception of PM Start Stop and
PM Interactive, the operating system calls these
procedures to indicate actions that the system
is taking. Calls to these procedures by the
operating system will only be made if the
boolean, Has PM located in the KERNEL interface
section, is set to true. (PM Start Stop is
responsible for setting this boolean.) The
following paragraphs describe the procedures:

® MM Fault. The operating system calls this
procedure each time it enters the fault
handler. (A fault occurs whenever a code
segment is needed from disk, when the stack
is about to run into the code pool or the
heap, when the heap is about to run into the
code pool or the stack, or if a pool fault
occurs on systems with extended memory.)
This procedure must not cause an additional
fault; it must not call any procedure that
may not be 1in memory. Stack space
requirements must be minimized.

@ ™ Dump Seg. The operating system calls this
procedure from the fault handler.
PM Dump Seg indicates that SegToDump is being
removed from the code pool. (A SIB P is a
pointer to a SIB. SIBs are described in the
Internal Architecture Reference Manual.) This
procedure must not cause an additional fault,
it must not call any procedure that may not
be in memory. Stack space requirements must
be minimized.

5-29

Debugging and Analysis

@ PM Prog Begin. The operating system calls
this procedure to indicate that a program is
about to start.

@ PM Prog End. The operating system calls this
procedure to mark the end of a program.

@ PM Start Stop. This entry point controls
performance monitoring. This procedure
should memlock PERFOPS and set Has PM to
true, or vice versa depending on the value of
parameter start. You must call this routine
before PERFOPS can be used. It should be
called again to deactive PERFOPS. It can be
called directly from the program being
analyzed. It could also be called from a
small program executed Jjust prior to (and
just after) the program being analyzed.

NOTE: PERFOPS must be memlocked before
setting Has PM to true.

@ ™M Interactive. The 'I' command in the
debugger calls this procedure if Has PM is
true. This routine should provide data

gathered by the first four procedures of
PERFOPS. In this way, you can use PERFOPS
interactively from the debugger.

5-30

CHAPTER 6

UTILITY PROGRAMS

Utilities

INTRODUCTION

The p-System's utilities are various precompiled
programs that may assist you in many ways. Most
of the utility programs included here are useful
during program development. The wutilities
covered in this chapter are:

The Decode utility which displays the content
of code files in a meaningful fashion.

The Native Code Generator which translates
portions of a p-code file into
processor-specific native code.

The Patch utility which enables you to view
the internal content of any sort of file.

The XREF wutility which is wuseful for
analyzing Pascal programs.

6-3

Utilities

DECODE

The DECODE utility, called DECODE.CODE, provides
access, in symbolic form, to all useful items
contained in code files. The following
information is available.

@ Names, types, global data size, and other
general information about all code segments
in the file.

@ Interface section text, if present, for all
units in the file.

@ Symbolic listing of any (or all) p-code
procedures in any (or all) segments of the
file.

@ Segment references and linker directives
associated with code segments.

The decoder should be used whenever you want
detailed knowledge of the internal contents of a
code file; for instance, an implementor of a
p-machine emulator decodes test programs so that
the object code can be executed and understood
step-by-step. You should refer to the Internal
Architecture Reference Manual, if detailed use
of the decoder is planned.

If a program uses a UNIT, the UNIT is decoded
only if it is within the host file; DECODE won't
search the disk for UNITs to decode. Assembly
routines linked into a higher-level host won't
be disassembled when the host is decoded.

6-4

Utilities

When the system executes DECODE, the first
prompt asks for the input code file (if
necessary, the suffix .CODE is automatically
appended). The next prompt asks for the name of
a listing file to which DECODE's output may be
written. This may be CONSOLE: (indicated by
pressing <return>), REMOUT:, PRINTER:, or a disk
file. The system then displays the following
menu:

_ Segment Guide: A(ll), #(dct index), D(ictionary), Q(uit)

The following items explain the DECODE options.

D(ictionary Displays the code file's segment
dictionary.

A(11 Disassembles all segments in the
code file.

#(dct index A number of a dictionary index
followed by <return> disassembles
a given segment, if present.

Q(uit Exits the decoder.

6-5

Utilities

DECODE Programming Example

Given the following Pascal program:

V0NV SN WS

_{$L LIST1.TEXT}
PROGRAM DEMO;
VAR I‘INTEGER;

BEGIN
< I:=T*I;
END;

s v e e

BEGIN
- 1:=50;
REPEAT
ADDI;
UNTIL -1=400;
END.

N N S L) A e e i B A A O
T T

O=N==2000-=0aa0coa

NN NN W W WU
»ﬂsbooﬁmoomﬁeaa

.l

SEGMENT PROCEDURE ADDI'

DECODE displays a prompt asking for input and

listing file names.
call the D(ictionary option,

Then,

if you press 'D' to
the system

displays the following listing.

INX.

0:
1
Pk
3
4z
5%
6:
14
8:
s
10:
1:
n2:
1353
14:
15z
(C):

Sex:

Segment Guide:

NAME START SIZE VERSION M TYPE SG# SEG TYPE RL FMY_NAME or

DEMO 2 20
ADDI -1 14

LEAST significant byte first

6-6

IV 0 M | PSEUDO 2 PROG SEG R 1 5
IV 0 M PSEUDO 3 PROC SEG R

DSIZE SGRF. HISG TS
3 0
DEMO

NO. SEG

NO SEG

NO_SEG

NO_SEG

NO_SEG

NO_SEG

NO_SEG

NO_SEG

NO_SEG

NO SEG

NO. SEG

NO_SEG

NO_SEG

NO SEG

|

A Next Page: 0
ACLL, #(dct index), D(ictionary, Q(uit

Utilities

The A(1ll options produces the following
disassembly.

_Constant pool for segment DEMO

Block:

0: 1700 0000 4445 4D4F,2020 2020 0100 1400 0400 0000 ~---DEMO

*10: 0000

2 Block offset: 0

Seg pffset; 0

Block: 2 Block offset: 40 Seg offset: 40

0: 0100 0000 0C00

Segment: DEMO Procedure:
Block: 2 'Block offset: 26
Data size: 0 Exist IC:
Offset
0(000): .LbCB 50
2(002) = SRO 1
4(004): SCXG ADDI
6(006): SLDO 1
7¢007): -~ LDCI 400
10(00AY: EFJ 4
exit code: -
12(00C) : RPU 0

Constant pool for segment ADDI
Block offset:. 0

0: 1300 0000 4144 4449 2020 2020 0100 1000 0400 0000 ----ADDI

Block: 1
10: 0000
Blocks =1

0: 0100 0000 0CO0

Block offset: 32

Segment: ADDI Procedure:
Block: 1 Block offset: 26
Data size: 0 Exist:ICz
offset
0(000>: sSLDO 1
1¢001) = INCI
2(002) : SRO 1
exit code:
4(004): RPU 0

1
Seg offset: 26

38

Hex -code
8032
A501
1 7201
30
819001 -
D2F8

9600

Seg offset: -0

Seg offset: 32

.
Seg offset: 26

30

Hex code
30

" ED

A501

9600

Utilities

D(ictionary Display

DECODE's

D(ictionary option display is a

format of the code file segment dictionary.
The following items describe the information
that is displayed.

Index

Name

Start

Size

Version

DECODEs name for each segment;
individual segments may be
disassembled by entering their
number and pressing <return>; for
example, 'O<return>' for this
sample causes only DEMO to be
disassembled.

Contains the names of each
segment.

Contains each segment's starting
block (relative within the code
file).

The length in words of each
segment.

The p-System version number of the
segment.

M TYPE is the machine type. Usually this is

M PSEUDO,

indicating a p-code segment, but

assembled segments indicate a given machine.
Other possible values for M TYPE are M 6809,

M PDP,

M 8080, M Z 80, M GA 440, M 6502,

M 6800, M 9900, M 8086, and M 68000.

Utilities

SEG_TYPE can be NO SEG, PROG SEG, UNIT SEG,
PROC SEG, or SEPRT SEG. NO SBG is an empty
segment slot, PROG SEG is a program segment,
UNIT SEG is a UNIT segment, PROC SEG is a
SEPARATE routine segment, and SEPRT SEG is an
assembled segment. -

The RL columns indicate whether or not the
segment 1is relocatable and whether it needs to
be linked. An 'R' indicates a relocatable
segment. An 'L' indicates a segment that must
be linked.

If the segment is declared within a program or
unit, then the FMY NAME column contains its
family name, that is, the name of the program
or unit. Otherwise, the DSIZE SGRF HSG
columns are displayed and contain,
respectively, the compilation module's data
size, segment references, and the maximum
number of segments.

At the Dbottom of the screen, '(C):' is
followed by whatever copyright notice the code
file may have. The next line indicates the
byte sex of the code file. The menu is the
last line on the screen. On the same line,
the block number of the next portion of
segment dictionary is displayed after '"Next
Page:". (In this example, the segment
dictionary is entirely contained in block zero
so next page is zero. The last portion of the
segment dictionary always points back to block
Zero.)

Utilities

Disassembled Listing

The first portion of a disassembled 1listing
shows the housekeeping information at the
beginning of a code segment. The block number
of this information is given. (Code files
start at block O0.) The block offset and
segment offset are always O. The information
occupies the first 11 words (O through 10) of
the segment. This housekeeping information
(which is described in the Internal
Architecture Reference Manual) includes such
things as the segment name, byte sex indicator
word, part number, and so forth. To the
right, the same information is displayed as
ASCII characters when printable, and as dashes
when nonprintable. (The segment name is
usually the most obvious part of this
display.)

The next few lines have the same format and
display the constant pool. The block offset
and segment offset are always nonzero for the
constant pool. They represent the offset, in
bytes, of the constant pool from the beginning
of the block and the beginning of the segment,
respectively. String constants and character
type constants are usually easy to pick out in
the ASCII display to the right.

6-10

Utilities

The disassembled code itself is displayed by
procedures. The block number, block offset,
segment offset, data size, and Exit IC are
displayed. (Data size and Exit IC are
described in the Internal Architecture
Reference Manual.) The OFFSET column shows the
offset in bytes from the front of the
procedure (the count is in both decimal and
hexadecimal). Then the p-code mnemonic is
displayed; followed by the operands, if any;
and finally, the HEX CODE for that particular
instruction.

The OFFSET column corresponds to the fourth
column in a compiled listing.

Jump operands are displayed as offsets
relative to the start of the procedure, rather
than IPC-relative (IPC is the instruction
program counter). This is to make the
disassembly more readable. Thus, the operand
shown is the offset of some 1line; in the
example, the equal false jump (EFJ) on line 10
shows 4, which means line 4-—the SCXG
instruction; the HEX CODE indicates that the
offset is actually F8 (or -8), which is
IPC-relative.

If a single segment were to be disassembled
(rather than using the A(1l) command), a line
similar to the following would be displayed.

There are 1 procedures in segment DEMO.

Procedure Guide: A(LL), #(of procedure), L{inker 1nfo),
C(onstant pool), s(egment references),
I(nterface text), Q(uit)

6-11

Utilities

Selecting A(1ll) disassembles all of the
procedures 1in the segment (in the example
there is only one). Entering the number of a
procedure followed by <return> disassembles
that procedure. If present, L(inker
information, S(egment references, and
I(nterface text may also be displayed.

For example, if the segment is a unit with
interface text and you press 'I', the
following listing may be displayed.

Interface text for segment SOMEUNIT: - :

PROCEDURE A PROC; '
PROCEDURE ANOTHER. PROC(I : INTEGER) ;

- FUNCTION A_FUNCTION:BOOLEAN;
IMPLEMENTATION

If the segment had references to other
segments and you press 'S', the following
listing may be displayed.

* .'Segment references List for segment KERNEL:

14 #xx 5: SYSCMND

. .13z CONCURRE 4: DEBUGGER

- 12: PASCALIO . 3: FILEOPS

- 11: HEAPOPS .~ 2: SCREENOP
0:

10: STRINGOP

If the segment had linker information and you
press 'L', the following 1listing may be
displayed.

" Linker information for segment SOMESEG:

SOMEPROC EXTPROC srcproc=4 nparams=0 koolbit=false

6-12

Utilities

NATIVE CODE GENERATOR

The Native Code Generator (NCG) is a wutility
program that translates selected portions of an
executable p-code file into processor-specific
native code (n-code). Using native code
directives inserted into the source code, you
indicate which portions of the file are to be
translated. The result of this procedure is an
equivalent p-System code file that contains
p-code and n-code. The NOG will translate only
valid executable code files produced by a
p-System compiler.

Because n-code generally executes faster than
p—code, the NCG can be used to speed up the
execution of selected portions of p-code; for
example, portions of code where most of the
run-time is spent. However, p-code was designed
for compactness and, consequently, takes up less
space in memory than n-code. To use the NCG
effectively, translate only those portions of
p—code for which execution time is critical.
Misuse of the NCG can greatly increase the size
of the code file.

You indicate what portions of code are to be
translated by inserting native code directives
into the source file before compilation. The
following compile-time switches are the native
code directives.

$N+ and $N-

6-13

Utilities

You insert the first switch §$N+} where the
translation should begin and insert the 1last
switch {$N-} where the translation should end.
When the compiler encounters the first switch,
it begins generating the additional p-~code
necessary for n-code generation and stops
generating when it encounters the last switch.
The default setting for this compiler option is
{$N-f. (This notation applies to UCSD Pascal.
Similar notations apply to other languages.)

Directives and Pascal

Because the NOG translates a Pascal code file
on a procedure-by-procedure basis, only a
complete procedure (function or process as
defined in UCSD Pascal) can be translated.
One set of native code directives may
designate more than one procedure; but the
native code generation can't begin within the
body of a procedure. The following example
shows the use of the native code directives in
Pascal.

function MAX (a,b: ‘integer): integer;
- {SN+) : = = 2
begin. - ; % 7
..~4f a > b then MAX:= a else MAX:= b;
-end; . L= A
{SN-

6-14

Utilities

The object code file, produced by the compiler
from source code containing native code
directives, is an executable p-code file that
maintains its machine portability. The only
difference is that the native code directives
slightly increase the size of the object code
file.

6-15

Utilities

Directives and BASIC

The native code directives ($N+ and $N-) can
be inserted into the BASIC source code file at
any point within a procedure. You can specify
translation on a statement-by-statement basis.
The following example shows the use of native
code directives in BASIC.

cosus 100
I=4". S
GOsUB, 100
.7 STOP
SN+ e
100 REM THE SUBROUTINE
FOR J=1 TO 100 S = i s
“ PRINT I o g Pk e e gt
Lok g : F :
{SN-2
Lol
NEXT J
RETURN
. END

Directives and FORTRAN

To designate code for translation in a FORTRAN
source code file, you must place the native
code directive $NATIVE before the first
statement function or executable statement in
a procedure. The native code directive must
begin in the first column of the line. The
translation directive still applies for the
entire procedure. The following example shows
the use of native code directives in FORTRAN.

FUNCTION MAX (1,0
SNATIVE
e MAX=1 .
IF (J .GT. I) MAX=J
 RETURN
END

6-16

Utilities

Running the NCG

The NCG is run by executing the appropriate
code file (such as Z80.NCG.CODE).

The NOG generates a prompt asking you for an
input code file and an output code file. The
output file must contain the suffix .CODE .
Only executable code files can be translated
by the NOG (they must be already linked).

The NCG will produce a formatted listing of
the code generated for each procedure it
translates. The NCG generates a prompt asking
you for the name of a 1listing file. To
produce a listing, enter a listing file name
(for example, Console:, Printer:, #5:List,
list.Text). To eliminate the listing, press
{return> in response to the prompt.

6-17

Utilities

The following listing

is an example

function MAX translated on the Z80 NCG.

Final 780 Code for segment TEST - procedure 2-
Segment offset 30

Source Object - -RADIX 10
P=Code-N-Code 1 \ - . g
(Dec. Offsets). - MP -EQU BC
ol -WORD - 91,-30
i s A
(o] Of A8 - . ;P-code NATIVE - -
1| DDSEOA T LdT L UE,CIX+10)
4 | DD5608 LD D, (IX+11)
7 | DDSEOC LD L, (1X+12)
10 | DD660D LD H, (IX+13)
1377 Lb AD
14| AC XOR H
15| F23400 JP P,L1
18| A2 AND)
19 | €33800 JP- L2
22|78 147 - 0D ALE
23| 95 suB L-
24| 7A 28D ‘A,D
25 |.9¢ . .. s8¢ H -
. 26 |- F24B00 L2s.. P P,L3 -
9: 29 | .210€00 3 Lp HL, 14
32|09 - ADDLS BL,BE - =
33| DDSEOC ‘LD ERCIX$12)
36 | DD560D. LD © D, (IX+13) -
BB s LD (HL) E
40§ 2¢ INC .- L
41 72 ; ‘LD - CHL) D
11: . 42| C35800 . R Ls
13: - 45| 210€E00 [E- Lb. “*. CHL,14
48|09 ; ADD - - - HL,BC
49| DDSEOA ~ LD ‘E, (IX+10)
52| DD560B LD - D, (IX+11)
=B LD - (HL) LE
6] 2¢ INC It -
e A i ED" == (HL) D :
15: 58 | CD4200 Lé: - CALL -~ INTRP_REL+66
155 61 ;exit de
61

| 9602

;p-code -RPU

6-18

2

of

The following 1listing
function MAX translated on the 8086,

Utilities

is an example of

Final 8086 Code for segment TEST procedure 2

Segment byte offset 30 . =

Source Object -RADIX 10
P-Code N-Code MP .EQU BP
(pec. Offsets) BASE .EQU DX
0 .WORD 34,0
0 F
4z 0| A8 ;p=code NATIVE
11 33c0 XOR AX, AX
3| 885£04 MoV BX ,4CBP]
6 | 385E02 cMP BX,2[BP]
91| 7F01 J6 L1
11| 40 INC AX
12| p1E8 L1 SHR AX,1
14| 7208 - Je L2
9 16 | 8B4604 MoV AX ,4[BP]
19 | 894606 MoV 6CBP],AX
i 22 | EBOG - JMP L3
13: 24 | 8B4602 L2: MoV AX,2[BP]
27 | 894606 MoV 6CBP] ,AX
A58 30 | FF1E0400 L3 CALL 4
15: 34 ;exit code
34 | 9602 ;p-code RPU 2

6-19

Utilities

The following 1listing

is an example

function MAX translated on the 8080.

“Final 8080 Code for segment TEST - procedure 2

Segment offset 30 . -

“Source Object . «RADIX 10
P-Code N-Code - . .
(Dec. Offsets) P <EQU BC
0 .WORD ~ 96,-30
0 o
4: 0| A8 : ;p-code ' NATIVE :
1| 210400 LD © HL,10
4 09 ADD HL,BC
5| 5E LD E,(HL)
6 2¢C INC - 15 :
756" - Lb D, (HL)
" 8| °210¢00 Lb HL,12
11 09 ADD HL,BC
12| 7€ LD A, (HL)
13| 2¢ INC (s
14 | 66 ‘LD H, (HL)
15 | 6F LD oA
‘16| 7A LD A,D
17| AC XOR H
18| F23700 JpP P,L1
21| A2 AND D.
22| €33800 JP L2
25| 78 L1: LD ALE
<26 195 < SuB L
R L 2T TA LB . AD
LR 28.|9¢ Ax el SBCL T RV,
L 29 | F24F00 1i2es JP PyL3
9:- 32| 210c00 - LD HL,12
35|09 . ADD HL,BC
_36.| SE Lo E, (HL)
37| 2¢ INC: L
SB S8 ek LD - b, (HL)
© 39 210E00 4D HL,14
42| 09 I ADD HL,BC
43| 73 S ot LD C(HL),E
44 | 2¢ ARV INC L
R Lo LD (HL) D
11: - 46| €35000 ! JP L4
13 49 | 210A00 [R e o o
Ees 52| 09 j S5 ADDY HL,BC"
"53| 5€ LD ~ E,(HL)
54} 2¢C INC L)
55| 56 - - LD 'D,(HL)
56 | 210E00 LD HL,14

6-20

of

Utilities

6-21

Utilities

The following 1listing is an example of
function MAX translated on the 9900.

6-22

Utilities

The preceding listings show the hybrid mixture
of p-code and n-code produced by the NCG.
Cooperation between the n-code code and the
p-machine emulator (PME) is achieved using the
following conventions:

@ NATIVE is the p—code that instructs the PME
to start executing n-code. On the Z80,
8080, and 8086, execution starts on the
byte following the NATIVE instruction. On
the 9900, execution begins on the first
word Dboundary following the NATIVE
instruction.

@ The header lists the register conventions:
p-machine registers on the 1left and
processor registers on the right.

@ The following reference points on each
processor listing indicate the instruction
that returns the processor from n-code to
p-code.

780 Listing, line 14
8086 Listing, line L3
8080 Listing, line 14
9900 Listing, line L2

@ On the Z80 and 8080, global and external
variables are referenced through BASE
relative relocation. On the 8086, global
variables are referenced through register
DX, which contains Base. On the 9900,
global variables are referenced indexed
from R14, which contains Base. On both the
8086 and the 9900, external variables are
referenced via base relative relocation.

6-23

Utilities

On the whole, the listing looks very much like
a listing created by the assembler. The
following notes may help interpret the
differences.

@ P-code is preceded by the the notation:
;p—code (all other instructions are
n-code.)

@ The exit code point of the procedure is
marked by the notation: ;exit code.

@ The left-most column of numbers contains
decimal byte offsets of equivalent p-code
in the original code file. These offsets
should help identify the source code by the
offset in the compiler listing.

@ The second column contains decimal byte
offsets into the final procedure code
generated by the NCG.

NCG LIMITS

The NOG produces an object code file whose
execution behavior is identical to the p-code
file, except for differences 1in execution
speed.

In those instances in which the compiler emits
calls to a run-time support routine, the NCG
leaves the p-code intact. Therefore, p-code
is used in those places where translation
would generate excessive code.

6-24

Utilities

Sequences of straight n-code (code between a
NATIVE instruction and its matching return
instruction) are treated by the p-machine as a
single p-code. (See 1individual processor
listings.) This fact causes two problems.
First, although the <break> key may be
recognized by the p-machine emulator (PME) at
any point, no further action is taken until
the next p-code boundary (that is, until the
current p-code 1is completed and the next
p-code 1s encountered). Since there are no
p-code boundaries in n-code, long sequences of
n-code can't be terminated by pressing the
<{break> Kkey. Second, p-machine events
(interrupts), 1like the break key, are only
acted upon at p-code boundaries.

It is possible to work around these problems.
You may force a p-code procedure call by
calling an empty procedure. P-code operators
which perform procedure calls aren't
translated into n-code. Therefore, long
sequences of n-code can be broken into smaller
sequences by a procedure call. Since it is
the procedure call itself that breaks up the
sequence, the called procedure could be an
empty shell.

6-25

Utilities

Some unusual FORTRAN and Pascal contructs
create code that the NCG won't translate. For
example, using the Pascal primitive,
P Machine, to generate an RPU instruction.

6-26

Utilities

PATCH

The Patch utility enables you to view files and
alter them interactivley on the byte level.

Patch is meant to be used interactively with a
CRT. It uses the screen control module (see the
Internal Architecture Reference Manual) to
accomplish this; therefore, it is
terminal-independent (within limitations).

There are two main facilities in Patch: a mode
for editing files on the byte level and a mode
for dumping files in various formats.

The byte-editing capability allows you to edit
text files, make quick fixes to code files, and
create specialized test data.

The dump capability provides formatted dumps in
various radices. It also allows dumps from main
memory.

EDIT Mode

When the system executes Patch, you are in the
EDIT mode. DUMP is reached by entering 'D'.
No information is lost in chaining back and
forth between the two modes.

6-27

Utilities

EDIT allows you to open a file or device, read
selected blocks (specified by relative block
number) into an edit buffer, either view that
buffer or modify it (with TYPE), and write the
modified block back to the file. The system
displays buffers on the screen in the desired
format; these can be edited in a manner
similar to using the screen-oriented editor.

The following paragraphs describe the
individual commands of the EDIT mode. When it
is impossible to perform a command, Patch
responds with self-explanatory error messages.
The following lines are the EDIT mode menu.

EDIT = D(umb,'é(et, R(eéd, SCave, MCix, T(ype,I(nfo, Flor, Black, ?

VEDLTJ:’V(igu, q(%pe,za(uif, 250

The following items explain each menu option.

D(ump Calls DUMP.

G(et Opens the file or device and
reads block =zero into the
buffer.

R(ead Reads a specified block from

the current file.

S(ave Writes the contents of the
buffer out to the current
block.

6-28

M(ix

Mi xed

Hex

I(nformation

F(orward

B(ackward

V(iew

Utilities

Changes the display format
for the current block.
Pressing 'M' toggles to
change from one format to
another: hexadecimal or
mixed.

Displays printable ASCII
characters and the
hexadecimal equivalent of
nonprintable characters.

Displays the block in
hexadecimal digits.

Displays information about
the current file including
the file name, the file
length, the number of the
current block, whether the
file is open, whether
UNITREADs are allowed, the
device number (-1 if UNITIO
is false), and the byte sex
of the current machine.

Gets the next Dblock in the
file.

Gets the preceding block in
the file.

Displays the current block
(see M(ix).

6-29

Utilities

W(ipe Clears the display of the
block off the screen.

Q(uit Quits the Patch program.

T(ype Goes 1into the typing mode,

which allows the buffer to
be edited (described 1in
following section).

TYPE Mode

The TYPE mode, 1like the screen-oriented
editor, allows the information on the screen
to be modified by moving the cursor and
entering over existing information. To
correct errors made while using the TYPE mode,
leave the EDIT mode without saving the file,
read the block over, and try again.

The following line is an example of the TYPE
mode menu.

- TYPE: CChar, H(ex, FCill, UCp, D(own, L(eff, R(ight, <vector arrows>, Q(uit

C(haracter Exchanges bytes in the buffer
for ASCII characters as they are
pressed, starting from the
cursor and continuing until you
press <etx>. Only printable
characters are accepted.

6-30

Utilities

H(ex Exchanges bytes in the buffer
for hexadecimal digits as they
are pressed, starting from the
cursor and continuing until a
'Q' 1is pressed; (hexadecimal
digits can be either uppercase
or lowercase).

F(ill Fills a portion of the current
block with the same Dbyte
pattern. Accepts either ASCII
characters or hexadecimal digits
for the pattern; upon
completion, the cursor rests
after the last byte filled.

The following commands move the cursor around
within the block of displayed data. The
cursor is always at a particular byte. Rather
than moving off the screen, the cursor wraps
around from side to side and from top to
bottom.

U(p Moves the cursor up one row.

D(own Moves the cursor down one
row.

L(eft Moves the cursor left one
column.

R(ight Moves the cursor right one
column.

6-31

Utilities

{vector arrows> Moves the cursor 1in the
direction of the arrow.

Q(uit Exits the TYPE mode and
returns to the EDIT mode.

DUMP Mode

You can generate DUMP mode in the following
formats:

@ Decimal, hexadecimal, and octal words.
@ ASCII characters, if printable.

@ Decimal (BCD) and octal bytes.

DUMP can flip the bytes in a word before
displaying it or simultaneously display a line
of words in both flipped and nonflipped form.

Input to the DUMP mode can be a disk file you
specify or can come directly from main memory.
(The DUMP mode is used primarily to examine
the PME and/or the Basic Input/Output
Subsystem [BIOS].)

The width of the output can be controlled; a
line may contain any number of machine words:
15 words fill an 132-character 1line, and 9
words fill an 80-character line.

6-32

Utilities

When you enter the DUMP mode, the screen
displays two options: D(o and Q(uit. Also a
lengthy set of format specifications are
displayed. These can be modified by pressing
the letter of the item and then entering the
specification. To activate the specification,
press 'D' for D(o.

The following 1list shows the DUMP mode
specifications:

a. The input: A disk file or device.

b. The number of the block from which dumping
starts; if (A) is a device, this number
isn't range-checked.

c¢. The number of blocks to print out; if this
is too large, DUMP merely stops when there
are no more blocks to output.

d. Pressing 'D' starts the dump.

e. A toggle: If true, it reads from main
memory; if false, it reads from the file in
(A).

f. An offset: The dump may start with a byte
that 1is past byte zero; O <= (F) <=
maxint.

g. The number of bytes to print;
0 <= (G) <= maxint.

h. The output file, opened as a text file.

6-33

Utilities

i.

The width of the output line, in machine
words; 1 <= (I) <= 15,

The following six items have three associated
Booleans that must be specified: USE, FLIP,
and BOTH.

USE tells DUMP whether or not to use the
format associated with that item.

FLIP tells DUMP whether or not to flip the
bytes before displaying words in that
format.

BOTH tells DUMP to simultaneously display
both flipped and nonflipped versions of the
line. If BOTH is true, the value of FLIP
doesn't matter.

Display each word as a decimal integer.

Display each word as hexadecimal digits in
byte order.

Display each word as ASCII characters in
byte order; nonprintable characters are
displayed as hexadecimal digits.

Display each word as an octal integer; this
is the octal equivalent of (J).

Display each word as decimal bytes (BCD) in
byte order.

6-34

Utilities

o. Display each word as octal digits in byte
order.

s. Put a Dblank 1line after the nonflipped
version of a line.

t. Put blank lines between different formats
of a line.

Both the EDIT and DUMP modes remember all
their pertinent information when the other
mode is operating.

Prompts

All user-supplied numbers used by PATCH are
read as strings and then converted to
integers. Only the first five characters of
the string are considered. If there are any
nonnumeric characters in the string, the
integer defaults to zero. If integer overflow
occurs, the integer defaults to maxint.
(Since integer overflow can only be detected
by the presence of a negative number, integers
in the range 65536 to 98303 come out modulo
32768.)

6-35

Y

\/

Utilities

THE XREF UTILITY

THE CROSS—REFERENCER

Introduction

The procedural cross-referencer (XREF) is a
software tool that helps you interpret large

Pascal program 1listings. The referencer
provides a compact summary of the procedure
nesting in a program,; a list of the

procedures; and, for each, the procedures that
call them; and a table of calls each procedure
made along with all nonlocal variable
references. It thus provides information
about the interprocedural dependencies of a
program.

Referencer's Output

The referencer produces five tables and an
_optional warnings file:
@ Ilexical structure table: summarizes static
procedure nesting.

@ Call structure table: 1lists procedures and

V/// the procedures that they call.
[]

<
o

Procedure call table: presents procedures
and the procedures that call them.

Variable reference table: shows each
procedure and the variables it references.

6-36

Utilities

/. Variable call table: 1lists each variable
and the procedures which reference or
modify it.

@ VWarnings file if desired: indicates
possible problems in the source program.

Lexical Structure Table

The first table displays the lexical
structure and the procedure headings. (The
term procedure means procedure, function,
process or program in this document unless
otherwise stated.) As the system reads the
input program, it prints out each heading
with the line numbers of the lines in which
it occurs. The text is indented to display
the lexical nesting. (This indentation must
sometimes be compressed to fit on an output
line.)

Referencer considers a procedure heading to
be any text between the words: procedure,
function, process, or program—ard the
semicolon which follows. This isn't the
Pascal definition, but is more useful in
debugging programs. If these reserved words
are embedded within comments, they are
ignored.

6-37

Utilities

The Call Structure Table

The system produces the second table after
it scans the program completely. The call
structure table is the result of examining
the internal data. For each procedure
listed 1in alphabetical order, the table
holds:

The line-number of the line on which its
heading starts.

Unless it was external or formal (and had
no corresponding block), the line number
of the BEGIN that starts its statement
part.

The characters 'ext' if the procedure has
an external body (declared with a
directive other than FORWARD); the
characters 'fml' if it is a formal
procedural or functional parameter; or
'en?' if it is declared forward with no
associated forward block or BEGIN. If a
number appears, the procedure has been
declared FORWARD and this is the 1line
number of the line where the block of the
procedure begins (that is, the second
part of the two-part declaration).

6-38

Utilities

@ A list of all user-declared procedures
directly called by this procedure. (In
other words, their call is contained in
the statement part.) The 1list 1is in
order of occurrence in the text; a
procedure isn't listed more than once.

@ A list of variables referenced by this
procedure; and, if nonlocal, the
procedure in which they were declared.
If a wvariable 1is modified by an
assignment, then it is printed with an
asterisk (*) in front of it.

The Procedure Call Table

This table is an alphabetical 1list of
procedures; and for each procedure the
procedures that call it.

Variable Reference Table

This table 1is an alphabetical 1list of
procedures; and, for each procedure, the
variables that the procedure examines or
modifies in any way. If the variable isn't
local to the procedure in question, then the
procedure is listed in which the variable
was declared.

6-39

Utilities

Variable references are shown 1in three

forms:

@ <variable name> ::= a local variable

@ <procedure name> <variable name> ::=
a variable defined in <procedure> that is
used but not modified

@ <procedure name>*<variable name> ::=

a variable defined in <procedure> which
is modified

Variable Call Table

The form of the variable call table is
demonstrated in the following line.

- <procedure name> <variable name>: <procedure name> [<procedure name>]

The first procedure name is the procedure
that owns the variable name, and the
following procedure(s) either examine or
modify that variable.

6-40

Utilities

Warnings File

A file of warning messages. There are three
types of warning messages in the warning
file:

@ 'Symbol’' may be undeclared line# xxxx.

@ 'Symbol' may not be initialized line#
XXXX o

@ Not standard, nested comments line# xxxx.

'Symbol' is an identifier, and xxxx is the
number of the line on which it occurs.

Referencer only catches initializations done
by replacement statements (':='), so
variables that are initialized by procedure
calls (including READ, and so on) are
flagged as possibly uninitialized.
Depending on the program, there may be a
surplus of such warning messages.

The 'Not standard, nested comments' warning
refers to the nesting of comments having
different bracket types: (* 1like this
{ verstehen Sie? } *), which is accepted by
the UCSD Pascal compiler, but not the
current ISO draft standard.

The warnings file may only be generated if
the variable reference table is also
generated.

6-41

Utilities

Using Referencer

The referencer has options that are
user-defined at run-time. When you X(ecute
XREF, referencer displays prompts asking for
answers for the following questions.

@ VWidth of the output device? [40..132]

This is the length of the output line for
the available terminal /printer.
Suggested output width is 80 characters.

@ File to be Cross-Referenced?

The name of the text file that contains
the Pascal program to be referenced. If
the specified file can't be successfully
opened, the prompt is repeated until you
enter a valid input file name or press
{return>. Entering an empty file name,
({return>) exits referencer.

6-42

Utilities

@ Is this a compiled listing? [y/n]:

The program reads either .TEXT files
containing Pascal source programs or
listing files generated by the compiler.
Using a compiled listing as input assures
you that the line numbers referenced are
synchronized with the line numbers the
compiler generates.

@ Do you want intrinsics listed?

This allows identifiers such as
'WRITELN', 'PRED', and 'GET' to be
accepted as valid symbols. These are
then cross-referenced as procedures
listed outside the 1lexical nesting and,
therefore, aren't expected to have a
'BEGIN' associated with them.

@ Do you want initial procedure nestings?

This generates the 1lexical structure
table. This table shows the procedure
headings and, for each procedure, the
list of procedures that it calls.

@ Do you want procedure called by trees?

This option is offered only if the
lexical structure table is desired. A
'y' generates both the call structure
table and the procedure call table. The
procedure call table lists each procedure
and all of the procedures that call it.
(A warning is displayed if 1less than
10,000 words of memory are available to
generate these trees; no provision is
made for possible stack overflow.)

6-43

Utilities

@ Do you want variables referenced? [y/n]:

A 'y' generates the variable reference
table.

@ Do you want variable called by trees?

[y/n]:
A 'y' generates the variable call table.
@ Do you wish warnings? [y/n]:

'Y' generates the warnings file. This
option is offered only if the preceding
selection was made.

@ Please enter the name of the warning
file:

If you select warnings, then you heve the
option of directing the warnings to any
file. If the file is a disk file, the
name should have '.TEXT' appended to it.

@ Output File:
The name of the file to which you would
like the output directed. If the file is

a disk file, the name should have '.TEXT'
appended to it.

6-44

Utilities

The referencer expects to read a complete
and syntactically correct Pascal program.
Although results with syntactically
incorrect programs aren't assured, the
referencer isn't sensitive to most flaws.
It cares about procedure, function, program
headings, and about properly matching BEGINs
and CASEs with ENDs in the statement parts.

Referencer doesn't try to format procedure
and function headings; it leaves them as
they were entered in the program, except for
aligning indentations.

The tables are all as wide as the output
line length, as specified by you. Eighty
characters are usually sufficient. For
large programs, the first table (the lexical
structure table) is clearer with a larger
print line.

Limitations

When presented with incorrect Pascal
programs, the behavior of referencer isn't
assured. However, it has been designed to
be reliable, and there are few flaws that
can cause it to fail. The most critical
features are: (1) the general structure of
procedure headings; and (2) correctly
matching an END with each BEGIN or CASE in
each statement part (since this information
is used to detect the end of a procedure).

6-45

Utilities

If an error 1is explicitly detected
(referencer has very few explicit error
checks and minimal error-recovery), the
system displays the following message:

FATAL ERROR - No identifier after prt.)g/proc/.func-- Af_L"me No:, HiH

The line number displayed (###) is the line
where the program found an error; like all
diagnoses this doesn't assure that the
correct reason is ascribed to the error.
Processing continues for a while despite the
fatal error, but only the lexical structure
table is produced.

Referencer accepts standard Pascal programs,
UCSD Pascal programs, and p-System units; it
processes each correctly.

6-46

APPENDICES

APPENDIX A
EXECUTION ERRORS

Fatal system error

Invalid index, value out of range
No segment, bad code file
Procedure not present at exit time
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User break

Fatal system I/O error

10 User I/O error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Break Point

15 Bad Block

16 Break Point

17 Incompatible Real Number Size

18 Set Too lLarge

19 Segment Too lLarge

O©ONO Uk wNoHO

All run-time errors cause the system to
I(nitialize itself; FATAL errors cause the
system to rebootstrap. Some FATAL errors leave
the system in an irreparable state, in which
case you must rebootstrap.

OCONHO b WO

APPENDIX B
I/0 RESULTS

No error

Bad Block, Parity error (CRC)

Bad Device Number

Illegal I/O request

Data-com timeout

Volume is no longer on-line

File is no longer in directory

Bad file name

No room, insufficient space on volume

No such volume on-line

No such file on volume

Duplicate directory entry

Not closed: attempt to open an open file
Not open: attempt to access a closed file
Bad format: error in reading real or integer
Ring buffer overflow

Volume is write-protected

Illegal block number

Illegal buffer

APPENDIX C
DEVICE NUMBERS

Device Volume
Number Name

CONSOLE:

SYSTERM:

{System disk '*'>
{other disk>
PRINTER:

REMIN:

REMOUT :

.o 127 <additional disks,
subsidiary volumes,
or user-defined
serial devices>

128...255 <user-defined devices>

o0 Uk N+

VNIV SHWN=2O

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

APPENDIX D

ASCII TABLE
040 20 sP 64
041 21 ! 65
042 22 " 66
043 23 # 67
044 24 3 78
045 25 % 69
046 26 & 70
047 27 71
050 28 (72
051 29) 73
052 2A 74
053 28 + 75
054 2c 76
055 2b 77
056 2 . 78
057 2F / 79
060 30 O 80
061 31 1 81
062 32 2 82
063 33 3 83
064 34 & 84
065 35 5 85
066 36 6 86
067 37 7 87
070 38 8 89
071 39 9 89
072 3A : 90
073 3B ; 91
074 3¢ < 92
075 3p = 93
076 38 > 94
077 3F 2 95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

I A AN X ECCAVMIDIVOZRrRECHNIOMMOoOODIP®

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163

165
166
167
170
171
172
173
174
175

177

IY—ANNXX X Z <CC W TaQDO3I3I —XW4IIQ D QAOTQ

=4
m
-

OO bW+

el i el el el el ol
QOO WNR O

NN NN
W N

50:
51:
52:
53
54:
55:
56:
5
58:
59:

\~]
()

APPENDIX E
PASCAL SYNTAX ERRORS

Error in simple type
Identifier expected
Unimplemented error

')' expected

':' expected

Illegal symbol (terminator expected)
Error in parameter list
'OF' expected

"(' expected

Error in type

'[' expected

']' expected

'"END' expected

';' expected

Integer expected

'=' expected

'BEGIN' expected

Error in declaration part
Error in <field-list>

'.' expected

'*!' expected

'INTERFACE' expected

' IMPLEMENTATION' expected
'"UNIT' expected

Error in constant

':="' expected

'THEN' expected

'UNTIL' expected

'DO' expected

'"TO' or 'DOWNTO' expected in for statement
'TF' expected

'FILE' expected

Error in <factor> (bad expression)

Error in variable

Appendix E

60:
61:
62:
63:

101:
102:
103
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

117:
118:

119:

120:

121:
122:

123:
124:
125:

Must be of type 'SEMAPHORE'

Must be of type 'PROCESSID'

Process not allowed at this nesting level
Only main task may start processes

Identifier declared twice

Low bound exceeds high bound

Identifier is not of the appropriate class

Undeclared identifier

Sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

<tagfield> type must be scalar or subrange

Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure
parameter

Unsatisified forward reference

Forward reference type identifier in
variable declaration

Respecified parameters not OK for a
forward declared procedure

Function result type must be scalar,
subrange or pointer

File value parameter not allowed

A forward declared function's result type
cannot be respecified

Missing result type in function declaration

F-format for reals only

Error in type of standard procedure
parameter

126:

127:
128:
129:
130:
131:
132:
133
134:
135:
136:
137:
138:
139:

140:
141:
142:
143:
144:
145:
146:
147:

148:
149:

150:

151:
152:
153:
154:
155:
156:
157:
158:
159:

Appendix E

Number of parameters does not agree
with declaration

Illegal parameter substitution

Result type does not agree with declaration

Type conflict of operands

FExpression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the
declaration

Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variable

Illegal type of expression

Type conflict

Assignment of files not allowed

label type incompatible with selecting
expression

Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not
allowed

Assignment to formal function is not allowed

No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or nonlocal

Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

A-9

Appendix E

160:
161:
162:
163:
164:

165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:

182:
183:

184:

185:

186:
187:
188:

189:
190:
191:
192:
193:
194:
195:

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proc/func not
allowed

Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Value parameter expected

Undeclared external file

FORTRAN procedure or function expected

Pascal functon or procedure expected

Semaphore value parameter not allowed

Undefined forward procedure or function

Nested UNITs not allowed

External declaration not allowed at this
nesting level

External declaration not allowed in
INTERFACE section

Segment declaration not allowed in
INTERFACE section

Labels not allowed in INTERFACE section

Attempt to open library unsuccessful

UNIT not declared in previous uses
declaration

'USES' not allowed at this nesting level

UNIT not in library

Forward declaration was not segment

Forward declaration was segment

Not enough room for this operation

Flag must be declared at top of program

Unit not importable

A-10

Appendix E

201: FError in real number - digit expected

202: String constant must not exceed source line

203: Integer constant exceeds range

204: 8 or 9 in octal number

250: Too many scopes of nested identifiers

251: Too many nested procedures or functions

252: Too many forward references of procedure
entries

253: Procedure too long

254: Too many long constants in this procedure

256: Too many external references

257: Too many externals

258: Too many local files

259: Expression too complicated

300: Division by zero

301: No case provided for this value

302: Index expression out of bounds

303: Value to be assigned is out of bounds
304: Element expression out of range

398: Implementation restriction

399: Implementation restriction

400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: 'PROGRAM' or 'UNIT' expected
406: Include file not legal
407: Include file nesting limit exceeded
408: INTERFACE section not contained in one
file
409: Unit name reserved for system
410: Disk error

500: Assembler error

A-11

APPENDIX F
COMPILER BACK-END ERRORS

The compiler back-end errors can result from a
variety of problems. Basically, they occur when
the back-end finds itself or the intermediate code
file in an unexpected state. (The intermediate
code file is a file used by the compiler to
communicate between the front-end and back-end of
the compiler. It consists of compiler directives
intermixed with actual p-code.) Back-end errors
can be caused by a corrupt intermediate code file,
external forces (such as bad blocks on the disk),
or source file information that is skipped by the
front-end but used by the back-end.

The following table lists each of the back-end
errors and gives a possible explanation for their
occurrence:

Error
Number Comments

-1 While trying to generate the constant
pool information for a particular code
segment, the back-end tries to read
one block from the intermediate code
file and the read fails.

1 If the 1lexical procedure nesting is
greater than 31, this error will
occur, Since the front-end only
allows nesting of seven procedures,
this error should theoretically never
occur.

A-12

11

Appendix F

The intermediate code file directives
are bytes with values greater than
252, If the back-end reads a
directive with a value that is less
than 253, error number 4 will result.

The current procedure number is
greater than the maximum number of
procedures for that segment.

The operator (variable, constant, jump
location) that the back-end is trying
to remap isn't in the scope of the
compilation unit.

The back-end can't find the target
site to jump to while resolving jumps.

There are more than 400 jumps in the
jump table while trying to enter a
site jump error. Try dividing each
procedure with many Jjumps into more
than one procedure.

There are more than 400 jumps in the
jump table while trying to enter a
target Jjump. Try dividing each
procedure with many jumps into more
than one procedure.

The code pointer is less than 0 or
greater than the 1length of the
intermediate code file while building
a jump table.

A-13

Appendix F

12

22

23

24

25

27

28

29

A jump site can't be found in the jump
table.

Unexpected end of input while
generating the 1CO p-code instruction.

Unexpected end of input while
generating the LDC p-code instruction.

The exit for a certain procedure can't
be found in the jump table.

The code pointer is less than O or
greater than the length of the
intermediate code file while
generating p-code.

The code pointer is less than O before
trying to read in more code from the
intermediate code file to the code
buffer.

The code pointer is less than 0 after
trying to read in more code from the
intermediate code file to the code
buffer. '

The current final output block number
is greater than the block number of
the intermediate code file being
processed.

A-14

30

31

41

86

Appendix F

The final code file size exceeds the
intermediate code file size before
trying to write more final code.

The final code file size exceeds the
intermediate code file size after
writing more final code.

The line length of a compiled listing
exceeds 120 characters. (Note: This
error can occur on a pre-IV.1l compiler
if there is an illegal character after
a DLE character.)

Couldn't find a particular segment in
the intermediate code file.

The number of procedures doesn't match
the number specified in the procedure
dictionary.

When you encounter a back-end error:

@ If a syntax error has occurred in the front-end
and a back-end error occurs, fix the syntax
error and try recompiling.

@ 1If there are bad blocks on any of the disks
being used for the compilation replace the bad
disks with good ones and try recompiling.

A-15

INDEX

-8

8080-00o.'ooc.nooooocoo-ooocooo 6"'23
80860-.0..00...--.01..

adaptable Turtlegraphics package. 3-62
altering memMOTryY. « « « o o o s o « o » i was e owme 0—9
ANST v o s s 66 s 505 s 68 6 s 6% s aio s 5 .0.% 6 a8 ¢« 3=T
Aspect Ratio. .« v e v vt v vt et vt e v o e e 3=-37
assembly 1anguUage. o« « o o o s o o s 0 s 0000000 2-34
assembly language routines.3-28, 3-31

—-B-—

backgroUund. « o s o« s s 56 ¢ ¢ 00 s w5 s 50 6 & a6 I=3D
background, black and white.....¢ ¢ ¢ ...3-32
background, hard. « ¢ « ¢ ¢« ¢ e ¢ ¢ o 6 ¢ s o ¢« a o » 3-32
BaSE: o ¢t ¢ 0 o 0 0 s s s e 0 s s s e s e aeeeesas 6-23
base relative location. « « « ¢ o ¢ ¢ o ¢ v s 0 o » 6-23
BASIC: s w0 » smo o 58 5 o & 2=3; 9-32, 3=63, 6-16
BASIC source code fil€. e ¢« e o o o ¢ o s 0 o0« 6-16
boOOt diSKe ¢ o o ¢ o ¢ s s 00 a a0 osees 377, 3-79
break poOintS. o v v o ¢ ¢ e o o ¢ 0o 0 00 0o 00000 5-6

I-1

Index

-C -

Call Structure Table. « ¢ o o ¢ o ¢ ¢ o o o o o » . 6-38
character fonts, Turtlegraphics. 3=77
character siz€.« S b B ad b e b e 3-77
CharHeight. « + « o ¢« ¢ o & e e e s s e e ee s 3277, 3-78
CharWidthe « v ¢ ¢ ¢ o ¢ o o o “ woew moww 3-77, 3-78
clear pixel test. .o v o v oo oo oo esas 380
sCODEG ¢ 6 v 6 66 8 608 o 68 6 6 s & o6 & & 6-17

code sSegmente. ..o e eoeeeooeoeooseseeses 2-33
color, bacKground. « « « « « o ¢« o s o s o s o s o o » 3=32
Color F1lliNZe o o ¢ s 6 o s ¢ 6 s 60 as0s0ase 3=T0
Command I/0 Unit. ..o eeeeeeeeeeeeess 3-24
Clompiles « & o6 o o6 5 ¢ 6 @ 64 5 666 @ & .. 2-4
compile-time switcheS. . .. ¢ o e o oo o0 0. 6-13
compiled 1iSting. « ¢ o o« o o ¢ ¢ e o 0o s s 00000 29
COMPLlere o ¢ o« ¢ o ¢ 6 0o o s o o s o s ooseseee 2=3
Compiler OptionS.o o eeeoeeeeseess 2-13

$B Begin Conditional Comp. 2-15, 2-24

$B End Conditional COMp.e « o o o s o o s o o » 2-24

PC Copyrighte o o o o o o o 0 o o s o o e e o o2-15
$D Conditional Comp Flag. 2-16, 2-24
$D Symbolic Debugging. cesees s 2=16
$E End Conditional COMpPae « « o o o s o o » .. 2-16
$I Include File..... cemaew oanw es % e & 21T
BT /0 Dhetkes s s s o oo ds s ss s o . 2-16
$L Compiled LiSting. . e v e oeeo.. . s B=1D
SN Native Code Generation. e e e 2-20
FP PRgle s e s s oo s s 0 5 s o a o w08 &0n . 2-20

$QQUiet...............-......2—21
PR2 and $R4 Real Size. .o v o o v oo 2-22

$R Range Checking. oo o« e oo e s 2221
$T Title. . ° . . L] . L] L] . L] . . L] L] Ll L] . . o L] L] 2—22
$U Use Library.. ... W TR . W)

BU User Prografe s s ws s v s v wn o w6 5 5 2=23
Complement. .« « ¢« « o o ¢ « « » 3-33, 3-44, 3-72, 3-85
complementing pixels. s i e % s e s 3-T0
conditional compilation. « « .« o s ¢ o o o e 2-24

I-2

Index

Create Figure. « « « v ¢ e ¢ s ¢ s o e oo+ o 3-43, 3-67
creating new figures.eoeoe.. 3-41

-D-

Date TeSte o « oo o s 06 s 610 6 608 6 20 s s 0 s o 4=49
D Change Name. o« o o ¢ o o o o o s 0 o oo s oesss4-40
D Choice. ia s dew s ea s sew e en e ve 4-17
DCodE: s s s s sosnsbnotnanissansnssss d=lF
DDatae.eeeeeeeeeeeeoeeeeeoeeeeas . 4-18
D(ebug

break pointS. .« . e o e s o o o e e e s eeess. 06

VariableS. o« o o o o e o 6 0 0 0 00 0 oo 0o e 5-8
debugger. « o « o ¢ ¢ o ¢ 0 o s o o o o4 % W% 44 O—3
debUZEINZ e ¢ « ¢ o ¢ o ¢ o s 2 s e s o s osoeasess 3-80
decimal byte offsets. A e e s e e .. 6-24
AECOAE . ¢ o ¢ ¢ o s ¢ o a0 s s s assseeoeaeeasseb-4d
default display scale. e e e s e e .. 3-38
default font.o oo o oo eeeesoeses 3=77
default font, replacing.o o ee .. 3=77
deleting new figures.es00... 3-41
D Fre€e e oeseosoeeescccossnsonsssaess 4-17
direction, turtle. cooee oo .3-31
directorieS. « ¢ o o o ¢ o ¢ oo s o s o0 seseese 4=12
Directory Information. . .« « « ¢« « ¢ e o s o o« o o« « 4-12

File Type Selection. . . .« .. e oo oo oo o 4-16

Notation and Terminology.4-13
Directory Information ACCESS.e ¢« « ¢ o ¢ o o o o « 4-12
directory lister program. 4-34
Directory Manipulation. . « ¢ o o oo o 4-12
DIR.INFO. ¢ ¢ v ¢ ¢ a0 oo asoseeeses 4-3, 4-12
DIR_INFO

File Type Selection. e ¢+ 0..4-16

Notation and Terminology. « « « « » o« o o « « «4-13
DIRINFO. o ¢ ¢ s s o6 s s 8 s s s s as s s onsanse 46
disassembling. « o« « o o« o ¢ e o 0 0 s 0 s 000000014
Display. e e o oeoooeoooososossosssess 3-3D

Index

displaying memory. « « « « « ¢ ¢ o e o s s 6 000+ 0=9
Display Scale€. « « o o v o v o v v o . oo 3237, 3-40
display SC8lE. ¢ o ¢ o ¢ ¢ s 0 0o 0 a0 esoaees 3-27
display scale, straight.¢e o000+ 337
display set test........... e e e s e e e 3-80
D NAME . o ¢ s et s et v ot oo v e noonooeess 4=22
D NameType. « « o o ¢ o o o o v o 0000 o s o . 0. 4-17
Arawing areaS. « « « o ¢« o s ¢ 6 0 s s o s e v s 0w O=27
Drawing MOd€. ¢« o ¢ ¢ ¢ ¢« ¢ o s ¢ o 0 0 o s o .« o 3-35
Drawing Modes
Complement. « o o « o o o o o 0 s s oo 3-33, 3-44
NOD: o ¢ oo a6 oo e s aseseseesss3=-33, 3-44
Overwrite. « « ¢ ¢ ¢ o o ¢ e e s 0o s 00 ose. 3-33
Substitute. « ¢ ¢ ¢« ¢ ¢ v 0 e 0 v v v 0o 3-33, 3-44
Underwritee o« o o o o o o 0 6 o 0o o o o o 3-33, 3-44
Draw Iine. « « « ¢ o ¢ s e s e v e v 0o v o . 365, 3-72
Draw Line test.............. e os o0 3-83
D Scan Titlee e o o o oo v o s 0o v e ew. . 4-15, 4-21
D SELECT. ¢ 4 ¢ e s ettt enenseesnseeess 4-16
D SVOLl. oo eeeesoeeeenneoseoss 4-18
D TemPe o ¢ o o o0 v o oo neoseossesesess 4=-17
D TeXteeeeeeoeoeosoeooooonasosss 4=-17
D TITLEw « ¢ ¢ o ¢ 0 0o 0 00 s o s o oesaoeas ... 4-22
D TYPE: ¢ e ¢ e v v 0o v s e nesnocscssesss 4=22
D VOlisssonssnsoansawnsos e o e e e s e s 417
D VOLUME« ¢ s o s sis s s o s 66 s s a5 8 6% s 0o 422

.

ENCOAINZ e ¢ o o o o o ¢ ¢ s o s 0o 060 aosoeeaess 3=-67
error handler unit.« eoeco0000003-18
Error Handlinge. ¢« « o« « o ¢ o o 6 0 o 0 0 o 0 s 004 4-13
error reSUltS. ¢ « v o ¢ o o 0 s s 00 e s osees 4-19
Example Program. « « « o o o o o 6 6 ¢ o s 0 o 0 s o s 3=01
executable code fileS. . o e ¢ o e o o 0o o0 .. 6=-17
executable p-code file. . e ' e v v v o v oo oo 6-15
EXERCISE2.CODE: ¢ ¢« o ¢ ¢« ¢ s s 66 s s s 0osaee 3=80

Index

EXERCISE4.CODE. ¢« ¢ ¢ ¢ ¢« ¢ e 6 v st e s e seeoes 3-80
EXERCISE DPIrOgralMe « o « o o o o« o s o 0 0 0 0 oo+ 3-64
EXErciSe PrOZralS. « « o o o o o s o s o o o o . s+« 3-80
EXERCISE.TEXT ¢ ¢ ¢ ¢ ¢ o o 0 s o s s s s oossesss 3-80
Exercising TurtlegraphicS. . « « .« o e s ¢ . 0. 3-80
exit code pointe « o o v v o ¢ o o s o o 0 o e e . 6-24
Extended Backus-Naur Form (EBNF).........4-13
external variables. e e e e s e e 6-23

FigPtre .o o oo e oot evesoeeeses 3-69, 3-70
FiguUreSe « « ¢ ¢ o o ¢ 0 ¢ 0 s o s s s s s s oseeeas 3-41
figures.: ¢ o o ¢ s o6 s 6w o s o0 s s s 0w 3=27
Figlfe S1Z€. o o o o s 00 s 6.8 ¢ s 5.6 ¢ 6.8 o 6 58 S=27
figure SQUArENESS.e « « o o ¢ s o o o 6 s« o o o o o o 3-37
file dateSe e v o o ¢ o ¢ o o o 0 e s o s o osseeesd-18
FILE.INFO. ¢ ¢ ¢ ¢ o o o o e e e e s eees 4-4, 4-74
File Information. « ¢ o c o ¢ o o ¢ s s 0 00 000 4-74
File Management UnitS. . .o e v o e oo oo 0eeo. 4-3

DIR.INFO.: ¢ ¢ o 4 o 0 ¢ o 0 0o s asoeeeed=3, 4-12

FITE.INFO. ¢ ¢« ¢ ¢ ¢ o 0 s 0 s s 0 s o0 4-4, 4-74

SYS.INFO. ¢ o ¢ o 6o s e o0 oo 0oseoee4d-4, 4-68

WILDG: o ¢ o o o o o s o6 o o a s asosooeoeseessd-4
File Manipulation. . « « « ¢« ¢ o o o o & P e
file, TurtlegraphicCS. « « « ¢« ¢ ¢ ¢ o o s o o s s o+ 3-62
FILEINFO. ¢ ¢ ¢« ¢ ¢ ¢ 0 o 0 6 066 a s aooseesess 4-9
Fill Color test. coe e v eeeeeson. 3-81
FillSCreen. « « o « o « o o o 0 s 6 s 0 aavesess 3-35
font, defaulL. ¢ oo s oo eoaosaseoeses 3=C7T
Font Structure. « ¢ « ¢ « ¢ o ¢ o ¢ e s o s s 0+ 0 03-78
font table. o o v v o o v s o 0 0o o e s e e oo s3=-78
FORTRAN. ¢« ¢ ¢ o ¢ o o s o s« « 2-3, 3-32, 3-63, 6-16
FORTRAN constructs. s e s e s s e e s s s 6-26
FORTRAN source code fil€. o e o e oo 0s0s0.. 6-16
sFOTO 4w o v o & s o s s a e s s e w s «w 348
FOTOFILES . ¢« o o ¢ 0 ¢ 0 0 ¢ 0 e s 00000 oeasess3-47

Index

Function
Aspect Ratio. ¢ « o o e e v v v et et vt 0.
Create Figure. « « « o ¢« o o v v o o 0 0 0 o 0
DChangeDate..................

D Change Name. « « v ¢ v ¢ o ¢ 0 0 a0 v o0 o s

. 3-42
. 4-47
4-38

D_Dlr_LlSt...............-.....4—25
DDiSMOUﬂt.............'.......4—21

D KIrUDCH . « v ¢ o o o 0 o o oo o oosvoeeoeoes

D MOHHE: s win s ss s nmns s omunsmnsus e
DRem FileS: oo o v vt et v vt v eeeens
D Scan Title....... o he PR
DWild Matche v v v v e v v oot v v v o n v
Figure SizZe. « ¢« « ¢« o o ¢ o ¢ o 06 s 0 s 8 ¢ s s
F 18 Blockeds wo = swn » s o
F Lengths o s sas s as s sms sawsswss

FOpetcess vusswss snescssesssa

F8tarts: vsos soosvos s o5 s

FUNit NUMDETr ¢ ¢ o ¢ o o o o o o 0 o o o o«

Load FIgUIE. v v v o v v v v o oo v v vsuns
ReadFlgureFlle

4-20
. 4-21
. 4-51
. 4-21
. 4-63
. 3-67
. 4-76
. 4-75
.4-74
. 4-76

4-75
. 3-49
. 3-48

Read Pixel. . v oo v oo oot v v v oeoeoess.3-47

Read Screen Pixel. & e i % e E ®
Redlrect.....................

. » 3-69
. 3-25

Result. o o o ¢ o ¢ ¢ 0 o o o oo 0o 0eeeeoessd=33

SCCheck ChaT's = s 5.5 o w6 5 o 5.6 ¢ 6.5 & & & &

SC FIRA K s o ss s snu amuw smn o5«
SC Find Yusses snwsnnsssns aons

3-15
. 3-12
. 3-12

SC Has KeY¥oe e e o oo s s oosnnaos v i 8 045 316

SCMapCBTComnand...............
SCPrompt....................
SC Scrn_ HaS. v v v v v v vt e vt vt v s

SCSpaceWalt...................
. . 4-69

ST Sys Unite s e oo eeoeeeeeeses
Store Flgure. T T T
Turtle_Angle. c s bt s e b e ae s se e e s
Turtle Xo oo oo oo v oo o oo v o neoeeoos
Turtle Y. oo oot et i et i oo o e vnson
Write Figure File. .« . oo v o v v e v v o

I-6

. 3-15
. 3-14
. 3-16

3-13

. 3-49
. 3-34
. 3-34
. 3-34

e o o 3—48

Index

-G -

Get FiguUre. « o ¢ o s v oot ot oo oo oeoaese 3-41
global display SCal€e ¢ ¢« v v o o s 0 s o0 oo 3-27
global variables. e e e e e s e e e 6-23
GRAFIX2.,CODE. ¢ ¢ ¢ s ¢ c e s s s s s 0o s s 4+ 3-65, 3-79
GRAFIX4,CODE.: ¢« v s ¢ o o o o o s s s o s+ 365, 3-79
GRAFIX fileSe e e v o o oo oo ooeeossssesss 3-63
GRAFIXX.CODE. ¢ ¢ ¢ ¢ ¢ 0o s s ¢ 0 v o s s eeesaoseld3=T79
Graphics I/O Routines.o oo s oo s 4365
Graphics System Initialization. s owm e s 31O

—-H-

hard background. « « « o« « o s o ¢ s o 6 o s 0 s s s s 3-32
Hardware Config. . « ¢ e o o v e o e v o v« . 3-75, 3-76

.

implementation section. ceesesee 235
input code T1l€e o ¢ ¢ o o 6 o e 6o e s 0 s oo 6217
Installing TurtlegraphicCS. . « ¢« « ¢ o o o o ¢ s « 3-62
interface section. « « « ¢ « ¢+ ¢ ¢ o 0 o« . 2-35, 3-50
ioresult. . « v ¢ ¢ « .. e s e s e e e e e s 3—48
I/O BOUTINES. ¢ w0 o s s a5 s mo @ mis »on - . 3-65

—-K -
break Ke¥. o o o o e 0 0 00 e 0 s esoossoeseaes 6-25

I-7

Index

Plic o665 6069 658 8 odws bndes s e e e s s oo s2-5
LabElSe v e ¢ s e ¢ o s o 0o s oo s s sessseess 3-36
Iexical Structure Table. .. e e o v oo oo 6=-37
1ibrarieS.e « « « o ¢« s e o s 0o 0 e s s s oo s ssess 2-36
1ibraryinge « « « o o o ¢ o 0 e o 0 0 0o aeseses 3=79
library text file. e v o o ¢ o ¢ o 0 0o 0 s 00 es 2-37
L(ANKET s o s o6 s 68 o o s s sis6 a0 o s s 86 B—34
1inkinge « o o o e s o 6o s oo oo 00 eees 2-32, 3=79
Linking and Librarying.«..eee240. 3-79
1iStinNge o o o o e s s 0o 0 s oo s 0 eesees 2-9, 6-24
Load FigUre€. « « « v ¢ o v o s oo s o e v s eeess 3-43
LocktesSt.: « ¢ e« o o e 6 ¢ o 0o o e o e s oowesess 4-54

mark stack ch8ine « ¢ ¢ o ¢ ¢ o ¢ e o e s 600 e0s o D=10
‘MAX Function
BOBO.: o ¢« ¢ o o 02 0 s s e o oooooeeessssas 6=20
BOBB . ¢ o ¢ o ¢ s 00 0 s e o eooeosssseses 6-19
9900 . v ¢ ¢ o s ¢ 0 o s s o 000 oeseeeeeass 6=22
Z8BOw o so s s w 610 8 w00 6w ww o wwn 8 oww s O=18
MaxXPiXe e o ovioo swnsoniosocsiosssess 3=10
MaxYPiX s v ¢ 6 s 6605 6% 5 ¢ oo ¢ 66 @ o5 5 & 3=10
MEMOTY ¢ o « o o s o o s s ¢ s s 8 s e s s s 0essasss0=9
Meta—wWordS. ¢ « ¢« ¢ o o o s o o 06 00 s s o oeeese 4-13
MinXPiXe o o o o 0 6 ¢ oo 00eeeooeeseeess 3=7T0
MinYPiK e oo s o0 o 5 610 & siim s 060 8 66 8 6.8 & & 3=L0
Mmode VAlUES.: o o o o ¢ s o ¢ s 8 e s s s s oseaesed=T1
Multi-tasking Support. « « « « « ¢ o o ¢ o s s o o » 4-13

Index

BN+ 4 o o o o o s oo soosesseessesss 6-13, 6-14
PN—. c c s s s o v 06 oo O R 6-13, 6-14
NATIVE. « e« ¢ s 66 e o6 s s 606 0soeesoessess 623
BNATIVE . ¢ « ¢« ¢ e o s o o o o oo seeseessssss 6-16
NAtive COdE.e « o s oo s 00 s s o0 s w2 s o' . o+ 6-13
native code directives....... 6-13, 6-14, 6-16
native code generation. e e.0..., 6-14
NATIVE instruction. « « « « o o ¢ o o s o s o s s o o« 6-23
NCOOE4+ o o o ¢ o s o s s o o s s s s o« 6-13, 6-23, 6-25
NOD: e e o s o s o0 oeesse 3-33, 3-44, 3-71, 3-85
numberic designation. « « « ¢ ¢« ¢ o o s 00 00 0.0 3232

-0 -

object code file. .. .veeeweeeeeeeesab6-15
Operating System User Manual........... 4-14
output code filE. e v v o v o o o s o s s s 0eseo 6=-17
Overwrite. . « v ¢ v ¢ o « « « 3-33, 3-44, 3-72, 3-85

-P-

parameters, routine€. . « ¢ « « ¢« ¢ ¢ o s o o o o .« 3-50
PasSCale ¢ ¢ o o o e 0 oo s s 0o s s s s s eeeeeeas=3
Pascal code fil€. o o o o o ¢ 0 o o o o o e s e .. 6-14
Pascal cONSEruCtS. ¢ « ¢« o ¢ ¢ o o o o T R 5]
Pascal primitive. « ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o« ... 6-26
2 T o o P e e
DUMP. & ¢ v vt e e e o o v o oesosecs 6-27, 6-32
BDITw o o0 w66 8 6500 6 616 6§ simis o & e o . 6=27
PromptSe s « o« aos s s 6.5 & 65 & & .5 s s os s es 6=3Db
TYPE: ¢ s o 5 606 s 669 % 6% 5 608 s e o o 0-30
P=COAE: ¢ ¢« ¢ s ¢ o s e 0o a0 sea0+. 6-13, 6-23, 6-24
p—code DOUNAATT e o ¢« ¢ ¢ ¢ o o o s o s s s o 0o o0 0 6-25
p-code file..... c e s e e s e e e e e e 6-24

Index

PCOdE:. ¢ ¢ ¢ o o s o s ¢ s o s a oo e e s s 5=-12-5-14
p-machine registers. . « « ¢ ¢ o ¢ o o o 0 000 0. 6-23
Pen Color. .« .os oo o0 s e s e e s e s ee e 3-29
Pen Mode. . o ettt e s e enosoecenseos 3-29
PETfOrmMaANCEe. o o o o o o o o s 6 o6 6 6 6660 0ses 3=72
PLXELl e o ¢ o o o o 6 e o 6 o o o o o 0o o s oo oosaeae . 3=-27
PigElSe o o si0o 2 sio0 8 s 8 8w = o0 » e s s 3-46
pixels, complementing. « « ¢« « s o o ¢ o o ¢ s o o s 3-70
p-machine emulator. « ¢ o« o o ¢ o ¢ o e o 0o s s s o » 6-23
p-machine emulator (PME). . .+ s o v v e e v oo« 6-25
PME. S % W W N S S IR g 6-23
POFteo o osmesnessss s e s o 0 s e e o e e 0. 3-41
position functionS. .« « ¢ « ¢« ¢ ¢ o 6 6 06 00 00 o 3-29
Procedure
Activate Turtle. « « ¢ ¢ ¢ o o o 6 0o 6 00 60 o0 3-34
BackePoUulds « s v o5 s s 5 s s 8 « sis § s @5 » 3-36
Chaife s v e a o 006 & 96 & @@ &b 6w e e 3-24
Comp Screen Pixel. o v o v v v v v v v 0o 0o e 3-70
Delete Figure. e e s e e 3-42
Display Scal€e e« v o« o ¢ o o 6o 0060 oeesoes 3-38
DJlocks sossvosess asensansesssasn 4-54
Draw Tines s « cs s so o s 65 6 w5 w 64 @ 5 & 3-71
DRelease. . ¢ oo v v oo v v oo oeecesos 4-54
Exception. ¢ s s s me s we s wus e OO
FDates « vw s swweoss o anw ams venea 4-77
F File Title. “s w Em K e S EE N 4-76
Fill Colors ¢ su s s % 45 N
FillSCreeN. « o o o o o o o s 0 s s 6 s s s 0 0o 3-35
F Volume. . .. ¢ .o .. e e s e s s e e 4-75
Get Figure. o oo« o os Gt et e e e e e .. .3-43
MOVE . ¢ ¢ o 0 0 o 0 o N E IR . 3-30
Movelo. s s« e o s a3 @ 58 & s % & 5 & &6 5 » 3-30
Pen Color..... T E TR . . 3-31
Pen MOde. o o o v o s e 0o 0o e oo ososssses 3-33
Put FigUr€e o o v o o v vt o v e veneenens 3-45
Query Environment. ¢ o0 v oo 3-66
SCClr Cur Idne. « ¢ « ¢ v e s s v s v 00 e 3-10
SC Clr Line. s v v v e v v o v o e e s e e e e 310

I-10

SC Clr SCreeN. « « « o s ¢ o 0 s s

SC DOWHle o ¢ o o o s o »

SC Eras EOS. ¢« v v v o o o o o

SC Erase to FOL. . ..

SC GetC CH. v v v ..

e o e o ¢ o o

® o o o o o o e o o o o

SC GOtO XY¥4 ¢ ¢ o o o o oo

SC_Home. .
SC Inite « ¢« o o o«

SC Lefte o eeeese

SC Right.
SC UDe oo 0 o a6 s »

e o o

SC USe INTO. v o o o o v v

SC USE POTte v v o o o v v

Set Error Line. « « « « .

Set Pixel. oo ...

e o o

Set Screen Pixel.

SI Code Tid.. ..
SI Code Tidl. ...

SI Code Vide o o o o « .

SI Get Date. ...

SIGetSysVol.........

SI_Set_Date. -
SI Set Datel.
SI_Set Pref Vol. .
SI Set Pref Voll.
SI Text Tid. ...
SI Text Tidl. ...
SI Text_Vid. ...

TUYN e o ¢ ¢ o ¢ 0 0 o o o o
TUrNtOe « s o ¢ 6 6 o o s & s

o e

.

.

® e o o o o 0o o o o o

e o o o

SI Get Pref Vol..... .

Index

.. 3-10
.. 3-11
.. 3~-11
.. 3-11

0100000.3—12

0.00o00..3_12
00-0000103_12

.. 3-10

ceseeeese 3-11

e o o o o o o o

® o o @ o o o ©o o o o o .
e e ¢ o o * o o
e e o ¢ 2 o o o o

e o o o o o

e o o o o o o o
ooooo ® o o o o o

e o o o o o o o

. s . 4-69

5 e o o o o o

e o o o o o o

e o o o o o o

¢ o o @ o o o o o

@ o o & o o o

® © o o o o o o o o s o

Viewport. O

wchar . o e L] L] L] . . - L .

WString. « « « ¢ o &

Procedure Call Table. .
processor 1isting. . « o o o o v o 0 0 0 0 o

I-11

000-000-0000004—69

.. 3-11
.. 3-11
.. 3-17

. 3-17

.. 0321

. . 3_47

e @ 9o & ° & o o s o 3_69
Set | _User Mesoage. o W b w W
Set User " Messagel.....

.. 321
. 3-21
. . 4-69
. 4-69

.. 4-71
.. 4-70
.. 4-70
4-71
.. 4-71
.. 4-70
.. 4-70
.. 4-69

. . 4-69
.. 3=-30

e . .3-31

.. 3-46
.. 3-36

e oo 337

.. 6-39

. o .. 6-23

Index

Processor regiSterS. « v e o o o s s s 0000 a. . 6-23

Program
Date Teste oo o oot v v v v e v eeeeees. 4-49
DChange Name. « « ¢ « ¢ v e s v v s 0o v oo 4-40
directory lister program.4-34
LocktesSt e ¢ ¢ o ¢ ¢ 6 e e e 0 s v s e s ooesess 4-54
Rem TesSt.e ¢« ¢« ¢ o 0o o 0000 oseesesses 4=-53
Scan TeBtee s s vs s vessmnsanmsssss 424
SYS TeSte ¢ v ¢ e 0 e 6 e vt v s v s essess 4=-71
WildOhBE:: « s o5 s 66 5 ¢ an 568 5645 84 n 4-42
Wild Teste o o v oo v v v e o s o v v oo . 4-66

pProgram, SAMPLE. o ¢ o ¢ ¢ o o o o o o o o s o 0 o s 3-51
Put_Fi gure . L] L] ® ® o e o o 3_41

-Q-
Query Environment. . « . « ¢« o o o o o 0 oo o 3-38, 3-77

range—ChecCkRing. « « o ¢« o ¢ ¢ o 0o o o o 6o o o s .« 3-65
Reference Points
BOBO: w4« av s v 66 & ais 8 siw s a o8 & ¢« s .. 6=-23
BOBBiso s so # s sio s siis 0 s w6 v w6 5 50w & 6-23
9900: s s s s 64 v a5 4 ¢ 0 » o8 ¥ & e s s e e 6=-23
2806 s 6 608 s 696 s 55 8 685 ¥ 5 e e s e e s . 6-23
reference pointSe « « ¢ ¢« o ¢ o » & e s s s e .. 6-23
Referencer's Output
call structure table..... e e s e e e es. 6-36
lexical structure table.¢.¢.... 6-36
procedure call table...... s e e s e s .. 6-36
variable call table. . e e oo v oo e o oo 6-37

variable reference table. o «6-36
warnings filee e o s o s s 66 5 ¢6 ¢« 505 » 5 6-37
registersS. « ¢ « ¢ v oo e 000 e e s e e e e e e 5-12

Rem Test. ... ettt ii it nenn 4-53

I-12

Index

restricting displaye « o« « « o o s ¢ 0 0o s 000 3-41
Routine ParameterS. .« « « o o o ¢ ¢ o o s e s s s« 3-50
BN 6 o6 6 0 66 5 s sv e o sas s o8 asnses 2=4
Tun~-time SYStemM. ¢« « o ¢« ¢ o o o o 6 s s 00 0 s o0 o 3-D
run-time support routine. 6-24

-S-

SCALINZ e o ¢« ¢ ¢ ¢ ¢ ¢ o e o oo oosooeessesss 3=37
scaling factorsS. « o v v o o o o 0 s o o o 0o oo 3237
Scan TesSte v o v oo oo v teeeeoensseesssd=24
screen control unite.. .. eeeoeoeoeooooeeesd37
screen description record. « « « « o« o o 0 s o s o« 3-68
SCREENOPS.CODE . ¢ ¢ 4 4 ¢ o ¢ 0 o v s s a0 eoeess 37
ScreenPtr. ¢« v ¢ e ¢t s s e e ot o e s s s e e s 3-68
Segmenting a Program. . « o o o ¢ ¢ o o o s o 0 oo 2-32
SEEMENES e ¢ ¢ ¢ o o e o o o0 s s oo sesee 2=32, 2-40
SeleCtivVe USES. o ¢ e s s o o s s s 0 0 a0 00 s o e2=27
separate compilation

external compilation.« e o o000, 2-33
SRATE . o oo s s ie6 & s aim & o 0 % &0 T LY
ShipPIinge ¢ ¢ ¢ 45 ¢ s a2 s a6 s 00 oseesee 3-28
SInNgle SteP. o ¢ ¢ o ¢ o s e 0 0 o o s s oseeessD=12
Size, figUIre. ¢« v ¢ ¢t o ¢ o ¢ e e o e o 0000 es e 3=27
SOft background. « « « v+ ¢ ¢« ¢ ¢ ¢ o ¢ o 0o 00 e 00 3=35
SOUYCe COGC. o« o w6 6 s a6 656 & & & s o N
soUrce fil€e s v oo s su s e veovosoneses b-13
special initialization. .« « « « ¢ o o e o e o o oo 363
straight n-code. e s e e e e s 625
Substitute.3-33, 3-44, 3-72, 3-85
symbolic debugging. . « « o o ¢ ¢ ¢ ¢ ¢ s s o0 s« o D=19
symbolic designation.o o co oo q 3-32
SYNtAX ErrOTS. ¢ o o v o o o s s s o s s o v 00 eae 2=7
SYS.INFO. o« v v v v 4 e s e e s s e e e 4-4, 4-68
*SYSTEM.FONT.3-36, 3-64, 3-77, 3-79
System Information. « « o o« o ¢ o ¢ e o o o oo e o 4-68
gystem initialization, «« sws s s ws s 69 & u 5 » 3-0

I-13

Index

system initialization, graphicS.: 3=75
SYSTEM.LIBRARY . & v ¢ ¢ 0 s ¢ ¢ e e o oo osveses 2-36
*SYSTEM.LLIBRARY. . . . 3-28, 3-62, 3-75, 3-76, 3-79
SYSTEM.MENU. ¢« ¢ ¢ ¢ ¢ o ¢ o ¢ s e s s veosoeesoes 3=4
SYSTEM.STARTUP . ¢ ¢« ¢ ¢ o ¢ ¢ 6 0 0 a s s s o esesae3-4
SYS TeSt e o e o o s ¢ o s 00 a0 e oeoeeeesss 4-71
SYSINFO. o« v 0 s s ns s nesomsnsssbonsses 4=8

T -

test, clear pixel. . . e o e e s 000000000 3-8
test, display test. ... ¢ e e e oo eeees. 3-80
text fileSe .o oo s oo ooeeeeseecesesad=1l
Turtle. « o ¢« o « « s e mE sale e v E s e s DA
Turtle ANgle. o ¢ o o o ¢ e o oo o s o o s o s oee «3-29
THRTLE.CODE s » esms s s s swn s oo« 68 5 ¢« S3~79
turtle direction. « ¢ o e o ¢ o o o o o o o o s .. 3-31
TURTLEGRAPHICS . ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 o 6 e o s v e v v s 3=79
Turtlegraphics character fonts.......... 3-77
Turtlegraphics fileS. . . v v e v v o o oo oo o+ o 3-62
Turtlegraphics general routines. 3-27
Turtlegraphics, installing. 3-62
Turtlegraphics unit, creating...........3-65
Turtle X. oo o oo oo oo % e w wiew W e s . 3-29
TUFELE Yo s umu s oo w swn s ss s smn v sonn S=20

UCSD Pascalc v oo 6 s a6 5 600 & s 2-3, 3-63, 6-14
Underwrite. « « o ¢ ¢ o o o o 3-33, 3-44, 3-72, 3-85
Unit Interface
DIRINFO. . « « « & 6 e b e w asw s aaddew s s d—6
FILEINFO. ¢ ¢ ¢ ¢ ¢ o 0 00 0 a oo seasssessd-9
SYSINFO. o o0 ¢ 060 o 00 s sis s o 08 s sis s o o4=8
VIID: ¢ ws s swn swe « s 6 s s 6 04 6 6% & ¢ =D
UNitSe o ¢ o o o o o o » »2-32, 2-33, 2-35, 2-40, 6-4

I-14

Index

implementation section.e¢¢ 2-35

interface sectionN. .. .« .o oo e oo 2-35
USECs si0 6 6 60 8 s w e w oo s e 68 5% & oims «u 240
user-created figure. 3-43, 3-45
User-Created Figures ExerciseS.« 3-86
USERGRAPHICS . ¢ v ¢ v ¢ ¢ v ¢ s o o o « 3=75, 3-76, 3-79
USERGRAPHICS UNit. o o o o o o 0 0o 00 oo ossaees3-64
USERLIB.TEXT ¢ ¢ s 56 s s 6 s 60 5 ais 045 ¢ o0 8 2=37
¥USERLIBLTEXT: s 5 s v % s o 05 s o6 o 600 o 000 o S—(9
Using Referencer. . . . « s « « o« o o o o o o e oo 6-42
USRGRAFS . ¢ ¢ ¢ ¢ ¢ e 6 6 s s s s s s s s s s s s o s o 3-76

-V -

Variable Call Table. « e ¢ ¢ ¢ o o o o 0 o o o« . .« 6-40
Variable Reference Table. « « ¢« o « ¢ ¢ o o « o« » « 6=39
VATLiaDbleSs ¢« v o v s s 5 5 ¢ 55 % 60w N -
VECLOr ArTrOWS . « ¢ ¢ ¢ o o s 0 0 0 o o e e e e eee 6-32
Viewport. ¢« ¢« ¢ o o o ¢ o o 0 o o e e e s e e 3-28, 3-41
viewport boundaries. v n w e e e e w e 346

Warnings File. se s ss s asesss s 6-41
WChar. « « c o o e oo e v oesesss 3236, 3-64, 3-77
width/height ratio. e e s e e s e e 3740
WILD. I - T =)
Wild CardS. « s o s v s s s s sawnowsweaeas «d-13
WildChng. o o ¢ o o e 4 e 6 0 o o o s s o oossees 4-42
Wild Test. o vo e e vt o e eeoessenoesnees.d-66
WINdOW. ¢ o ¢ ¢ ¢ o o s o e o oo oo 3-28, 3-41, 3-46
WSEring. o o o o o o e e o o o o o o s« 3-36, 3-64, 3-77

I-15

Index

-X -

X—coordinate. « « « ¢ ¢« ¢t ettt e .3-34
XREF...Q.ccuooooo.oo.oooooooooo 6-36

Y—COOrdinate. « o o ¢ o ¢ ¢ ¢ o v s 0 a0 0 ssases3-34

Z80.coo.vooooolooocooantooonaol6—23

I-16

	Cover
	Preface
	Table of Contents
	Chapter 1: Introduction
	How to Use This Manual
	Background
	Design Philosophy

	Chapter 2: Compiling Programs and Units
	Introduction
	Using the Compiler
	Segments, Units and Libraries
	General Tactics

	Chapter 3: User Interface
	Introduction
	Run-Time Application Facilities
	The Screen Control Unit
	Error Handler Unit
	The Command I/O Unit
	Turtlegraphics

	Chapter 4: File Management Units
	Introduction
	Interface Sections
	Directory Information
	Wild Cards (WILD)
	System Information
	File Information

	Chapter 5: Debugging and Analysis
	Introduction
	Debugger
	Performance Monitor

	Chapter 6: Utility Programs
	Introduction
	DECODE
	Native Code Generator
	PATCH
	The XREF Utility

	Appendices
	A: Execution Errors
	B: I/O Results
	C: Device Numbers
	D: ASCII Table
	E: Pascal Syntax Errors
	F: Compiler Back-End Errors

	Index

